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ABSTRACT

In this paper, we introduce some of our works contain-
ing the latest achievements in recognition of large quantities
of stored video and low-quality images to support and ex-
pand human visual capabilities in the context of driving. We
have applied the works to ITS technologies, especially driver-
assistance and navigation systems that recognize driving en-
vironments with an in-vehicle camera and/or other sensors.

1. INTRODUCTION

Recent years have seen great advances in the development
of ITS (Intelligent Transport Systems) technology. For exam-
ple, driver assistance and navigation with the aid of computers
and various sensors are being actively developed. In particu-
lar, in-vehicle camera images are commonly utilized, since
they contain important visual information. To support and
expand human visual capabilities, we have been developing
various pattern recognition techniques for large amounts of
stored video and low-quality images. We have also been de-
veloping applications for ITS recognition techniques as out-
lined below.

� Enhancement of car navigation systems

– Change detection in streetscapes from GPS co-
ordinated omni-directional image sequences [1]
(Section 2)

– Estimating car location by corresponding series of
multiple laser radar data [2]

– Confirming the existence of stores on an urban
map by detecting strip-like signboards [3]

� Weather recognition for driver assistance

– Raindrop detection from in-vehicle video cam-
era images for rainfall judgment [4, 5] (Sec-
tion 3)

– Visibility estimation in foggy conditions by in-
vehicle camera and radar [6] (Section 4)

� Traffic sign and signal recognition

– Identification of degraded symbols on traffic sign
by a generative learning method [7]

– Recognition of traffic signals in various conditions
for safe driving assistance [8]

In this paper, we introduce the works highlighted in bold-face.

2. CHANGE DETECTION IN STREETSCAPES

One aspect of desired ITS technology is to enhance car navi-
gation systems in terms of offering better information to drivers.
In these systems, navigation maps are important. However,
these need frequent updates because of streetscape changes
such as road works and new buildings. Updating a map, how-
ever, is expensive, since many people have to actually walk
through the city and collect a lot of relevant information.

2.1. Approach

For quick and efficient updating of maps, we have developed
a method of automatically detecting changes in streetscapes
from omni-directional images taken from cars.

In collecting street image data, we assume that many cars
with general GPS and an omni-directional camera run freely
without purposefully collecting the data. Consequently, we
can obtain a large amount of GPS-coordinated images taken
at various times and routes with a low-cost system. We use
an omni-directional camera to efficiently capture images in
all directions from the cars. To collect position information,
high-accuracy GPS such as RTK GPS may be available, but
it does not suit our application because of its cost. Therefore,
we assume the use of a general GPS or D-GPS fitted to con-
ventional car navigation systems. Such GPS, however, has an
approximately 10-m margin of error, meaning that we can-
not correctly gather images at identical locations by simply
collecting images that have the same coordinates.

For the reasons mentioned above, we need to solve the
following three problems.

1. Accurate alignment of images of the same location from
images collected by freely running cars at various times.



Fig. 1. Detection of changes in streetscapes.

2. Improvement of the position information attached to
image frames.

3. Detection of changes in streetscapes from images taken
at various times.

To deal with these issues, we have developed a novel me-
thod comprising alignment of images and calculation of the
difference between aligned image frames. The method is com-
posed of two stages. The first stage accurately aligns a map
and street images taken at various times, while the second
stage detects changes in streetscapes from the aligned data.
In the first stage, we solve the first two problems. Image
frames at the same location are aligned by matching image
sequences taken along a roughly identified GPS coordinate
route. For image matching, we integrate dimension reduction
by PCA (Principal Component Analysis) and DP matching (a
matching algorithm based on Dynamic Programming), then
accurately determine the position information of each frame
by calculating average coordinates for the aligned images. We
call the aligned image data a Street Image Map. Then, in the

secondstage,wecalculate thedifferencebetweenaligned im-
ages takenatvarious times todetectchanges instreetscapes.

2.2. Algorithm

Wecollecta largenumberof imageswith theirGPScoordi-
nates, construct aStreet Image Map, and detect changes in
streetscapesaccording to theprocess illustrated inFig.1.

2.2.1. Collectionof imageswithGPScoordinates

Afull implementationof thissysteminvolvesmanycarsrun-
ningfreely, eachwith anomni-directionalcameraandGPS.
Theomni-directionalcamera isattached to the topof thecar
tocapture images inall directions.CoordinatesfromGPSare
taken insynchronizationwith the images.

Fig. 2. (a) Omni-directional image, (b) Mask to extract fea-
ture vectors (�=25,538), (c) Masked image.

2.2.2. Stage 1: Construction of a Street Image Map

Image frames determined to be at the same location from
large amounts of cityscape data are aligned accurately. We
call this a Street Image Map. Figure 1(a) shows the process.
Since the data we collect are taken by a lot of cars running
freely, we must extract image sequences taken on the same
routes, which we can distinguish with GPS coordinates. As a
result, we can obtain images along the same route on various
dates.

Next, PCA is applied to reduce the dimensions of the fea-
ture vectors of each image frame. This makes it possible to
some extent to reduce the amount of calculation, the required
storage space, and the influence of illumination changes ac-
companied by weather changes. The feature vector is an ��
dimension vector that has�,�, and� values for pixels in the
masked area shown in Fig. 2, where� is the number of pixels
in the area. This vector is normalized so that the average of
its components should be zero and its norm, one. We limit
the area with a mask because pedestrians or other cars may be
at the edges, top, or bottom of the omni-directional images,
and they can be detrimental to accurate matching. Before re-
ducing dimensions, with PCA we create a lower-dimension
eigenspace than the feature space using various city images,
then project each frame feature vector to the eigenspace and
obtain the sequence of points ������� � � � ���� on the eigen-
space. Here, � is the number of frames.

Next, we align dimension-reduced images frame by frame.
This is the first point of our method. By this process, it is
possible to align frames that reflect the same location at vari-
ous times. DP matching is utilized to absorb temporal expan-
sion and contraction caused by differences of car speed and
to achieve alignment through all the images. We apply Eq. 1
below recursively to the two sequences of points on the eigen-
space: ������� � � � ���� and ���

�
���

�
� � � � �����, and employ

Euclidean distance on the eigenspace ���� 	� � ���� � ��� ��
�

as the dissimilarity.
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Here, 
��� �� � ���� ��. In an experiment, we set certain
values for ��� ��� ��. Furthermore, the sequence of frame



number pairs ��� 	� chosen up to 
��� �� have been calculated
to show matches of two image frames.

The second point of our method is to average GPS coor-
dinates attached to the aligned images with the aim of obtain-
ing accurate position information. It is known that the aver-
age of the coordinates measured at a particular location for a
long time converges at the true coordinates. Based on this, it
is considered that the average coordinates are more accurate
than the collected data.

2.2.3. Stage 2: Detection of changes

It is the third point of our method to detect changes in street-
scapes from images of a specified location aligned in the first
stage. Figure 1(c) shows this process.

The aligned frames of the specified location are sorted in
order of time, namely, �, �, �, � � �. The dissimilarity be-
tween � and the other frames � �� � �� 
� � � �� is calculated
by approximately adjusting their positions to reduce the in-
fluence of the car’s position in the lane. If their variance ex-
ceeds a threshold �� , we determine that there is a change, but
if the camera catches a reflection off a large car or if image
alignment fails at certain frames, the dissimilarity will rise
temporarily. Therefore we restrain it from temporarily rising
by median-filter and Gaussian-filter smoothing over the time
sequence of the dissimilarities.

2.3. Results and discussion

2.3.1. Stage 1: Construction of a Street Image Map

First, we experimented on the construction of a Street Image
Map, confirming the accuracy of image alignment. We used
44 data items collected over about a year, and aligned the old-
est data with the other data. For the alignment, we extracted a
route of about 170 m from the data, and reduced the 64,458 di-
mensions of the feature vectors to 20 dimensions. In terms of
DP matching, the weight factor ���� ��� ��� is �
� �� 
� from
Eq. 1. This was the best weight in the pilot study.

We judged the results by manual checking. If a frame
was aligned to its most similar frame, we judged it to be cor-
rect, while if there were some frames more similar than it, we
judged it as false. We evaluated the rate of correctly aligned
frames in all frames, which resulted in an average of 94.1%.
Figure 3 shows a part of frames aligned at a certain location
on the route. Their standard deviation of the GPS coordinates
attached to the correctly aligned frames at that location was
6.86 m, which is assumed to be the accuracy of the GPS co-
ordinates for measurement over a long time. The average of
these standard deviations over all frames was 7.98 m. The
data were collected at speeds under 40 km/h, and the frame
rate was 30 fps, so the distance between the locations of two
consecutive frames was less than 0.4 m. Thus the average co-
ordinate has a 0.4 m margin of error in the car’s direction of

Fig. 3. Example of aligned frames.

Fig. 4. Example of images at change-detected locations: The
area where the streetscape changed significantly is marked by
dashed lines.

travel even if the alignment is correct and the position infor-
mation is accurate. Therefore, it is assumed that if the number
of samples increases, we can converge the error of position
information to about 0.4 m in the direction of travel.

2.3.2. Stage 2: Detection of changes

We also experimented on detection of changes using the same
data used in Section 2.3.1. This time there were four extracted
routes, which included four major changes in the streetscapes.
Threshold �� was set experimentally.

According to the results, we correctly detected three chan-
ges out of four. Figure 4 shows images of the detected lo-
cations. These images reveal that there were indeed chan-
ges at the detected locations. For the remaining case, where
the change was too small even from human eyes, our method
could not distinguish a sufficiently large dissimilarity.

2.4. Conclusion

We have developed a new method that detects changes in
streetscapes from many street images taken at various times.
Experiments produced the following three results.

� Images were aligned with a high accuracy of 94.1%. It
is, therefore, possible to align images taken at the same



location at various times.

� GPS coordinates attached to the aligned images were
accurate to between 7 and 8 m. We confirmed that if
the alignment was accurate and we collected more data,
we could converge the error to less than 0.4 m in the
direction of travel.

� Three changes of streetscapes out of four were detected
from real-world data.

Future work will include applying a larger amount of data.
We consider the Street Image Map will have various applica-
tions in addition to detection of changes, for car navigation
systems or driving simulation systems that use real-world im-
ages.

3. RAINDROP DETECTION FOR RAINFALL
JUDGMENT

Since driving in rain is more difficult than in fair conditions,
accident rates dramatically increase. Weather changes both
temporally and spatially, so we believe that it is important to
develop techniques that recognize weather in real time by in-
vehicle sensors for driver assistance. Actually, auto-wiping
systems are already implemented on some commercial cars
for rain recognition, controlled by a so-called “rain sensor.”
However, the target region for detection covered by the sensor
is small, so it does not necessarily reflect the changes in the
visibility from a driver’s view point. On the contrary, an in-
vehicle camera covers most of the driver’s visual field since it
targets the entire windshield.

3.1. Approach

We have previously proposed a method of detecting raindrops
from in-vehicle camera images by template matching using
the subspace method, which extracts image features of rain-
drops and judges rainfall from the detected results [4]. This
method suppresses false detection of raindrops by limiting the
target region to the sky region, which does not have complex
patterns in the background. However, it was ineffective in
cases that the ratio of sky region to the entire image is small,
such as in an urban district crowded with high buildings or in
a tunnel.

Hence, we have developed a new method, using time-
series information, that does not require region restriction for
stable raindrop detection. This method includes the following
features.

1. Automatic extraction of image features of raindrops by
using PCA (Principal Component Analysis).

2. Robust detection of raindrops by using time-series in-
formation.

Fig. 5. Image feature of raindrop.

Fig. 6. The flow for rainfall recognition.

Raindrops have a uniform shape; any drop basically ap-



Fig. 7. Eigendrops and their contribution rates.

3.2.2. Learning Stage

First, a rectangular region circumscribing each raindrop is cut
manually as a training set from images of a windshield taken
in rainy weather. A total of K images is prepared for learning.
Next, they are normalized in size to width W and height H,
represented as one-dimensional vectors, which are then nor-
malized so that they become unit vectors with means of 0, rep-
resented as: �� � ���� ��� � � � � �� �� , where � � � � � .
Let a matrix arranged by K randomly selected vectors from
the test images be � � ������� � � � ��� � and its covariance
matrix be� =��� . The eigenvectors ���� ��� � � � � ��� cor-
responding to the largest R eigenvalues of � are selected as
the feature vectors. A subspace generated by these eigenvec-
tors are called “eigendrops.”

3.2.3. Detection Stage

Raindrops are detected from the test images as follows. First,
to emphasize the image features of raindrops, an averaged
image is produced from multiple sequential frames obtained
from the input video. In the averaged image, we focus on
rectangular areas with the size of� �� . Let the area be rep-
resented by an one-dimensional normalized vector �. Next,
we compute the degree of similarity ���� of � with the eigen-
drops, where ���� is defined as ���� �

��

	����� �	� ((x,y):
inner product). The area is detected as a raindrop candidate if
���� is larger than a threshold. The coordinates are detected
by computing ���� throughout the frame by shifting the rect-
angular area in focus. Finally, raindrop regions are obtained
by frame-wise matching of the raindrop candidates.

3.2.4. Judgment Stage

Rainfall is judged by counting the number of raindrops de-
tected during the detection stage. If the number of raindrops
in the image exceeds a certain threshold, we judge that it is
rainy, and not rainy if it does not.

3.3. Experiments

3.3.1. Setup

We mounted a digital video camera in a car and took the im-
ages (30 fps, �� � ��� pixels, grayscale). Our method was
applied to each frame of the input video sequence. Then the
recall and precision ratios for raindrop detection were calcu-
lated to evaluate the detection accuracy. In the learning stage,
the eigendrops were made from 500 raindrop images. Fig-
ure 7 shows eigendrops created from the clipped raindrops.
The subspace dimension was six when the eigendrops were
made.

3.3.2. Results

Figure 8 shows examples of raindrop detection in some ex-
perimental conditions, while Fig. 9 illustrates the recall and
precision curves. It is clear that when the number of frames
used for averaging increases, although recall improves sig-
nificantly, precision drops somewhat. Furthermore, when the
number of frames used for frame-matching increases, although
precision improves, recall falls. The best result was precision
of 0.97 and recall of 0.51 when the similarity threshold was
0.70 under five-frame averaging and ten-frame matching.

3.3.3. Discussion

Precision is more important than recall in practice for a wind-
shield wiper controller, since to incorrectly recognize rain-
drops and let the windshield wiper malfunction must be avoided.
However, it is also a problem when recall is too low. While
this result was obtained from the entire image, it was not in-
ferior to the result obtained by our previous method that re-
stricted the target region of raindrop detection to the sky re-
gion (precision = 0.97, recall = 0.59).

Since the success rate of rainfall judgment using the result
of raindrop detection from the sky region showed 89%, the
new method should also be able to judge rainfall similarly.

3.4. Conclusion

We have been developed a new method that detects raindrops
in background areas using inter-frame information. Exper-
imental results illustrated the method’s effectiveness as fol-
lows:

� Our method could detect raindrops from an entire im-
age with high accuracy (97% precision and 51% recall)
that was almost the same as that of the previous method
using only sky regions.

� The success rate of rainfall judgment using the result of
our method is considered to be up to 89%.

In future, we will evaluate the method under various rainy
weather situations according to time, place, and rainfall.



Fig. 8. Result of raindrop detection.

Fig. 9. Accuracy of raindrop detection by the proposed me-
thod.

4. VISIBILITY ESTIMATION IN FOGGY
CONDITIONS

Fog negatively influences human perception of traffic condi-
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driving a vehicle. Five sets of images were tested, where one
set included ten images that had been selected randomly from
the captured ones. Four different subjects, each with a valid
driver’s license, participated in the experiment. They classi-
fied the ten images into three classes for each set, and from the
result of this experiment, we obtained the appropriate class for
each image, which complies with human perception.

4.3.2. Evaluation method

We compared the judgments by our method and those by hu-
man subjects. In the following experiments, the test data set
was different from the training data set. The preceding ve-
hicle was always the same vehicle in the experiment and the
sky luminance was almost the same when the images were
captured. Assuming that �� and �� in Eq. 2 are invariables
from this, the regression curve was calculated for each class.

4.3.3. Results and Discussion

The results presented in Table 1 show the confusion matrix
for judgment by the proposed method and that by the human
subjects. The total precision rate for all classes was 85%. In
the experiment, we dealt with only one vehicle. In reality,
however, the indicator is affected by the variety in color or
shape of vehicles, though the indicator should not be affected
by these variances for reliable judgment of fog density. Thus,
improvement of the indicator is our next challenge.

4.4. Conclusion

We have developed a method that classifies fog density ac-
cording to a visibility feature of a preceding vehicle and the
distance to the vehicle. We obtained promising results (85%
of precision) through an experiment using data collected from
an in-vehicle camera while driving a vehicle. From the re-
sults, we confirmed that the proposed method can make judg-
ments that comply with human perception.

In future, we will consider an improved visibility feature
that does not vary depending on the type or color of a preced-
ing vehicle. In addition, we will consider a situation where
there is no preceding vehicle at all.

5. SUMMARY

In this paper, we have briefly introduced three works related
to application of pattern recognition for ITS. Future work will
involve conducting research on recognition and understand-
ing of video and images. For more details of our works, please
visit our website http://www.murase.m.is.nagoya-u.ac.jp/.
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