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Abstract

We propose a system for rain and fog recognition using multiple in-vehicle sen-
sors. Fog density is calculated from a preceding vehicle’s visibility given by an
in-vehicle camera and inter-vehicle distance by millimeter- ave (mm- ave) radar.
Rainfall determination is achieved by detecting raindrops on a indshield from in-
vehicle camera images. Experiments using in-vehicle camera images and radar data
collected hile driving vehicles in foggy or rainy and fair conditions demonstrated
the accuracy and the applicability of our system.

INTRODUCTION

Recently great advances have been seen in the development of ITS technology. Driver
assistance and navigation with the aid of computers and sensors are being actively devel-
oped. In particular, in-vehicle camera images are commonly utilized since they contain
important visual information. Driving is more difficult in adverse weather conditions than
in fair conditions, so accident rates dramatically increase. Weather changes temporally
and spatially, so it is important to develop techniques that recognize weather in real-time
by in-vehicle sensors for driver assistance.

In this paper, we propose a weather recognition system and focus on rain and fog
using an in-vehicle camera and a mm-wave radar device. Figure 1 shows an overview of
our system. From in-vehicle camera images and mm-wave radar data, our system outputs
two kinds of weather information around a vehicle: fog density and a determination of
rain. Auto-wiping, automatic lighting of fog lamps, speed and break control, and rousing
of attention are examples of potential assistance that can be realized with respect to our
system.

FOG RECOGNITION

RELATED WORKS

Koschmieder’s model expresses the degradation of brightness by atmospheric scatter-
ing [1]. Based on this model, Narashimhan and Nayar proposed a method that restores



(In-vehicle camera image }—————— ( mm-wave radar data |

;[Raindrop template] Vehicle template]

l

Raindrop dete tion Vehi le image lipping pref;):dsil::gr:/g;icle}i

A 4

[Number of raindrops] E[Preceding vehicle image]

l

A 4

Fog density al ulation

Inter-vehicle |i
distance Ji

Rainfall determination

ERain re ognition Fog re ognitioni

Fog density

Figure 1: System overview

the contrast of images captured in foggy conditions [2]. Techniques of visibility enhance-
ment and contrast restoration for driving assistance which use this model have also been
developed [3, 4]. According to Cavallo et al., under foggy conditions the distance to a
preceding vehicle’s tail-light is perceived to be 60% further away than under fair condi-
tions [5]. For real-time estimation of visibility in foggy conditions using in-vehicle stereo
cameras, Kuwon proposed Motorists Relative Visibility (MRV) [6], and Hautiere et al.
proposed a method to estimate visibility distance [7]. To realize fog lamp automation,
Leleve and Rebut tried to estimate visibility using an in-vehicle camera [8].

ALGORITHM

Our system calculates fog density using both an in-vehicle camera and a mm-wave radar
device [9, 10] (Fig. 1). To evaluate fog density, we focus on the relationship between
visibility degradation of a preceding vehicle and inter-vehicle distance (Fig. 2). mm-wave
radar is utilized with an in-vehicle camera, since it can measure distance without being
influenced by adverse weather.

Vehicle Image Clipping

Figure 3 shows the process of vehicle image clipping. A preceding vehicle region is detected
by template matching in a candidate rectangle area with a vehicle template image. The
candidate area’s size and position are determined from information provided by mm-wave
radar, including inter-vehicle distance and vehicle position in the image. The template
image and each rectangle image in the candidate area are normalized to restore the con-
trast degraded by fog before calculating their similarity. Similarity is defined as their
inner product. Our system clips a rectangle image that gives the largest similarity as the
preceding vehicle image.

When this method was applied to 10,028 images, clipping accuracy was 92.86%. Here,
all images included a preceding vehicle. In this experiment, a typical vehicle image cap-
tured under fair conditions was used as the template image.
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Figure 3: Clipping of a preceding vehicle image

Fog Density Calculation

An scattering coefficient of the atmosphere represents fog density, which is expressed using
Koschmieder’s model as
L=Loe ™™+ L;(1—e*). (1)

The scattering coefficient is calculated from both the visibility of the preceding vehicle
and distance to it. In Equation 1, L is observed luminance, Lg is the intrinsic luminance of
an object, Ly is the luminance of the sky, k is the scattering coefficient of the atmosphere,
and d is distance to the object. To evaluate vehicle visibility, we use the relationship
between the variance of pixel values of the image and an original image and derive the
following equation from the Equation 1.

log V//V
k=870 2
2d ? ( )

where V' and Vj represent the variance of pixel values of the vehicle image and the original
image, respectively. The original image is a vehicle image captured in fair conditions
(k = 0). Fig. 4 shows fog images and their k£ calculated by our system. We can observe
that k& gets higher as fog gets denser.



k X k X

Figure 4: Scattering coefficients for various foggy conditions

EXPERIMENT
Setup

We equipped a vehicle with an in-vehicle camera and a mm-wave radar device, which
provides two kinds of information: distance and relative speed to preceding objects. From
such information, our system finds the candidate position and size of a preceding vehicle in
a captured image. Two vehicles of different colors and shapes were prepared as preceding
vehicles. We collected data for this experiment while driving the vehicle in fair and
various foggy conditions. Data were classified into three classes of fog density: Light,
Moderate and Dense, by human subjects. Some were used as training data to determine
the thresholds about fog density between two classes, and others were used as test data
for system evaluation.

Results and Discussion

We compared the determinations obtained by our system with human subjects to evaluate
the performance of our system. Table 1 shows the confusion matrix for determinations
by the proposed system and by human subjects. The numbers in parentheses are the
percentages of the element to the total number of elements in each row; the percentages
in diagonal elements represent the precision rate for each class. For all classes, the overall
precision rate was 84%. As for the precision of each fog density level, Light 88%, Moderate
73%, and Dense 92% were obtained. The results demonstrate that our system worked
well, despite the variation of vehicles.
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Figure 5: Refraction of background to surface of a raindrop on windshield
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Figure 6: Eigendrops and their contribution rates

Rainfall Determination

Rainfall is determined by counting the number of raindrops detected in the detection stage.
When the number of raindrops in the image exceeds a certain threshold, we determine
that it is rainy.

EXPERIMENT
Setup

We mounted an in-vehicle camera and captured images while driving the vehicle in rainy
and fair conditions. Our system was applied to the input video sequence. Then recall
and precision ratios of raindrop detection were calculated to evaluate detection accuracy.
The eigendrops were made from 500 raindrop images (Fig. 6). In this experiment, the
subspace dimension was six.

Results and Discussion

Figure 7 shows examples of raindrop detection, while Figure 8 depicts the recall and
precision curves. When the number of frames used for averaging increased, although
recall improved significantly, the precision fell somewhat. Furthermore, when the number
of frames used for frame matching increased, although precision improved, recall dropped.
The best results were precision = 97% and recall = 51% when similarity threshold = 0.70
with 5 frame-averaging and 10 frame-matching. Precision is more important than recall
for practical use as a windshield wiper controller, since incorrectly recognizing raindrops
and letting windshield wiper malfunction must be avoided.

An 89% successful rainfall determination rate was achieved using raindrop detection
results when we varied the threshold of the number of raindrops.
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Figure 8: Accuracy of raindrop detection
SUMMARY

In this paper, we proposed a weather recognition system that recognizes fog density level
and determines whether it is raining using an in-vehicle camera and mm-wave radar.
Experiments were conducted using actual data collected while driving vehicles. The fog
level recognition rate achieved 84%, and the rainfall determination success rate was 89%.
From these results, we confirmed the effectiveness of the proposed system for rain and fog
recognition.
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