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Abstract. Technology for autonomous vehicles has attracted much at-
tention for reducing traffic accidents, and the demand for its realization
is increasing year-by-year. For safety driving on urban roads by an au-
tonomous vehicle, it is indispensable to predict an appropriate driving
path even if various objects exist in the environment. For predicting
the appropriate driving path, it is necessary to recognize the surround-
ing environment. Semantic segmentation is widely studied as one of the
surrounding environment recognition methods and has been utilized for
drivable area prediction. However, the driver’s operation, that is impor-
tant for predicting the preferred drivable area (scene-adaptive driving
area), is not considered in these methods. In addition, it is important to
consider the movement of surrounding dynamic objects for predicting the
scene-adaptive driving area. In this paper, we propose an automatic label
assignment method from actual driving information, and scene-adaptive
driving area prediction method using semantic segmentation and Con-
volutional LSTM (Long Short-Term Memory). Experiments on actual
driving information demonstrate that the proposed methods could both
acquire the labels automatically and predict the scene-adaptive driving
area successfully.

Keywords: Semantic segmentation · Path prediction · Autonomous ve-
hicle.

1 Introduction

Technology for autonomous vehicle has attracted much attention for reducing
traffic accidents, and the demand for its realization is increasing year-by-year.
Although some automotive manufacturers are already providing autonomous
driving functions on expressways, it is still difficult to provide such functions on
urban roads due to the diversity of the surrounding environment. To drive safely
on urban roads, it is indispensable to predict an appropriate driving path even
if various objects exist in the environment. Here, the path can be considered
as a trajectory of future vehicle positions, which should be predicted appropri-
ately since it will affect vehicle control during autonomous driving. Since vehicle
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(a) In-vehicle camera image.

(b) Example of drivable area. (c) Example of preferred drivable area.

Fig. 1. Difference between ordinary path and scene-adaptive path.

driving paths heavily depend on the environment, it is necessary to recognize
the surrounding objects, the situation of pedestrians, and other vehicles in the
environment in detail for path prediction. Therefore, the technology to predict
a future vehicle path is strongly needed especially for autonomous driving in
urban environment.

On the other hand, semantic segmentation, which is a task to predict object
labels pixel-by-pixel in an image, is widely studied as one of the surrounding
environment recognition methods [2, 7]. Barnes et al. [1] and Zhou et al. [8]
tried to extend the problem of semantic segmentation to that of predicting the
drivable area that cannot be observed as image features. They constructed the
semantic segmentation model from the training data generated by projecting
the trajectory of vehicle positions onto the road surface. For example, the green
area in Fig. 1(b) indicates the drivable area label that is used as a ground-
truth by Zhou’s method. As shown in Fig. 1(a), which is the original image
corresponding to Fig. 1(b), there is a stop sign on the path. However, as shown
in Fig. 1(b), Zhou’s method does not consider this sign and thus the necessity of
braking. In addition, although the drivable area should be adaptively changed
by considering the context of surrounding dynamic objects (e.g. pedestrians,
vehicles, etc.), Zhou’s method does not consider the necessity of braking against
those objects. Thus, we tackle the problem of predicting the preferred drivable
area considering the safety required for automated driving and the movement
of surrounding dynamic objects. Figure 1(c) shows an example of the preferred
drivable area in the context that can follow traffic rules around the intersection.
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Fig. 2.
Example of a scene containing oncoming vehicles.

The yellow rectangle indicates the oncoming vehicles.

Since the preferred drivable area should adapt to the environment, we call this
as the “scene-adaptive driving area”, and propose a method for its prediction in
this paper.

To predict the scene-adaptive driving area accurately, it is necessary to solve
the following two issues: (i) Generation of the ground-truth labelling of the scene-
adaptive driving area, (ii) How to handle the object movement in the vehicle
front. As described above, since the scene-adaptive driving area should end before
stop signs or other objects, it is necessary to prepare training data satisfying
this requirement for training a semantic segmentation model that can predict a
scene-adaptive driving area. On the other hand, the scene-adaptive driving area
should change dynamically due to the existence and the movement of oncoming
vehicles, pedestrians, and other objects. Figure 2 shows an example of a scene
containing an oncoming vehicles. In this situation, we cannot cross the road
safely without considering the moving state of the oncoming vehicles indicated
by the yellow rectangle in the image. That is, it is necessary to consider the
movement of surrounding objects for predicting an appropriate scene-adaptive
driving area.

To tackle the first issue, we refer to the vehicle speed to generate the training
data. If a driver operates the brake pedal, we can assume that the main cause
for that should exist in the vehicle front. However, there are possibilities such as
the existence of blind intersections, traffic signs, or red traffic signals. From these
points-of-view, we try to generate appropriate labels for scene-adaptive driving
area automatically by referring to the reduction of the own vehicle speed as a
key.

To tackle the second issue, we introduce feature learning from frame se-
quences. In a deep learning framework, LSTM (Long Short-Term Memory),
which is a variant of RNN (Recursive Neural Network), is one of the popular
techniques to handle frame sequences. Generally speaking, LSTM can be used to
learn sequential (temporal) information, but it loses spatial information. To pre-
serve the spatial information in LSTM, we use ConvLSTM (Convolutional Long
Short-Term Memory) proposed by Shi et al. [6]. The ConvLSTM is a network
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where fully connected layers in LSTM are replaced with convolutional layers. It
can be applied to the semantic segmentation task for predicting labels of a future
frame [4]. The proposed method incorporates ConvLSTM in the prediction of
the scene-adaptive driving area to learn the movement of other objects.

Based on the above concept, we propose a method to automatically acquire
training data from actual driving information and predict a scene-adaptive driv-
ing area. The main contributions of this paper can be summarized as follows:

– Proposal of the concept of “scene-adaptive driving area” considering the
necessity of braking.

– Automatic label assignment for training a model to predict a scene-adaptive
driving area referring to the own vehicle’s speed.

– Prediction of a scene-adaptive driving area that considers the movement of
other objects using ConvLSTM.

In the following, Sec. 2 proposes the automatic label assignment method,
Sec. 3 describes the construction of the scene-adaptive driving area predictor us-
ing ConvLSTM, Sec. 4 reports the evaluation experiments, and Sec. 5 concludes
this paper.

2 Automatic label assignment using driving information

Fig. 3. Process flow of the automatic label assignment.
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Figure 3 shows the process flow of the automatic label assignment. To out-
put the training data automatically, the proposed automatic label assignment
method receives driving trajectory, speed, and in-vehicle camera images of the
own vehicle simultaneously. A state-of-the-art semantic segmentation model is
used for assigning labels to the training data, such as roads, pedestrians, vehicles,
etc. To assign the scene-adaptive driving area label, the actual driving trajec-
tories are projected considering the reduction of the vehicle speed. Then, the
labeled images of training data are generated by integrating the scene-adaptive
driving area label and other labels. Figure 4 shows an example of an automati-
cally generated ground-truth label image by the proposed method.

Fig. 4. Examples of scene-adaptive driving areas.

2.1 Assigning labels: Pedestrian, vehicle, roads, etc.

To train the semantic segmentation model, it is necessary to prepare images
and pixel-wise annotation to each of them. Since drivers usually determine their
driving path from the relationship between the own vehicle and its surround-
ing objects (e.g. pedestrians, vehicles, and roads), it is important to recognize
those objects and scene-adaptive driving area simultaneously. Here, the labels
of pedestrians, vehicles, and roads can be easily and accurately extracted by
applying a state-of-the-art semantic segmentation model.

2.2 Assinging labels: Scene-adaptive driving area

The proposed method assigns the ground-truth label for scene-adaptive driving
area from the own vehicle’s speed and the actual trajectory of the own vehicle
estimated by a LIDAR-based localization method. Here, let Xt be the vehicle
center position at time t ∈ T in the world coordinate system and Ft′ be a trans-
formation matrix that converts the vehicle position from the world coordinate
system to a coordinate system whose origin is Xt′ (t′-th coordinate system).

Based on these notations, the vehicle position X̃t in the t′-th coordinate system
at time t is calculated as

X̃t = Ft′Xt. (1)
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Fig. 5. Projection of vehicle positions onto an image at time t′.
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Fig. 6. Overview of the proposed scene-adaptive driving area predictor.

By iterating the above transformation until the following conditions (2) are met,

a set of vehicle positions X̃t′ = {X̃t′ , X̃t′+1, ...} in the t′-th coordinate system is
obtained.

∥Xt −Xt′∥2 > D or αt ≤ −2 or vt = 0, (2)

where αt is the acceleration [m/s2] at time t, and vt is the velocity [m/s] at time
t.

Here, since a scene-adaptive driving area far from the own vehicle cannot
be observed in the image plane, the proposed method calculates the distance
between the vehicle position Xt′ and each point Xt, and terminates the trans-
formation process if the distance becomes larger than a threshold D. In addition,
it is necessary to consider traffic signs and traffic signals requesting the vehicle
to stop for safety. Through observation of actual driving data, we found that
these situations are observed with a specific driving behavior like the reduction
of the vehicle speed. From these points-of-view, the proposed method terminates
the transformation when the vehicle’s speed decreases.
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Fig. 7. Scene-adaptive driving area prediction model.

Subsequently, the vehicle trajectory is projected onto an image. Figure 5
shows the schematic diagram of the projection. The vehicle trajectory is obtained
using the set of vehicle center position X̃t′ and vehicle width. Here, the pixel
position {x′

t, y
′
t} on the image is calculated asx′

t

y′t
1

 = P

[
X̃t

1

]
, (3)

where P is a projection matrix. By filling with the corresponding class label
between the line segments that indicate the trajectories of left and right tires,
the scene-adaptive driving area is obtained.

3 Scene-adaptive driving area prediction model using
semantic segmentation and ConvLSTM

We build a scene-adaptive driving area prediction model from the training data
acquired by the above procedure. As shown in Fig. 6, the model is trained
from pairs of an in-vehicle camera image and a generated label, and assigns
label using only from the in-vehicle camera image for prediction. To predict the
scene-adaptive driving area considering movement of the surrounding object,
ConvLSTM is integrated into a scene-adaptive driving area prediction model as
shown in Fig. 7. The proposed method employs a semantic segmentation model
inspired by U-Net [5] that is based on an encoder-decoder architecture with skip
connections; The encoder extracts the latent features from the in-vehicle camera
images. Then, the pixel-wise label likelihoods are estimated by concatenating
and restoring the features using the decoder. To obtain the movement of ob-
jects, we remove the logits layer in the segmentation model and join the end
of the segmentation model to the ConvLSTM model. By applying the proposed
model to N in-vehicle camera images, N label likelihoods are obtained. Here, the
ConvLSTM model receives N label likelihoods. By learning the movements of
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Fig. 8. Vehicle used for the experiment.

other objects from N label likelihoods, we can predict the scene-adaptive driving
area accurately.

4 Experiment

We conducted an experiment for evaluating the proposed method. In this ex-
periment, the accuracy of the semantic segmentation results was compared by
changing the length of an input sequence N . We evaluated the proposed method
based on Intersection over Union (IoU) that is a measure to calculate the overlap
of the prediction results and their ground-truth. Here, IoU is calculated by

IoU =
A ∩ B
A ∪ B

, (4)

where A is the ground-truth constructed from the acquired dataset, and B is the
prediction result.

4.1 Dataset

The data were collected by driving around Nagoya Station in Nagoya, Japan,
with a special vehicle as shown in Fig. 8. DeepLabv3+ [2] model trained by
Cityscapes dataset [3] was utilized to assign the labels other than the driving
area. Here, we merged the labels of “car”, “truck”, “bus” in the Cityscapes
dataset into a single “vehicle” label. Finally, the proposed method merged these
labels with the label of the scene-adaptive driving area that is automatically
acquired from driving information. Figure 9 shows an example of the constructed
dataset. In the following evaluations, 4,245 data were used for training, and 1,405
data were used for evaluation.

4.2 Results and discussions
From Fig. 9, we confirmed that the proposed method could acquire training data
considering stop signs and other objects.
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(a) In-vehicle camera images. (b) Generated labels.

Fig. 9. Examples from the dataset.

Table 1. Experiment results (IoU) of driving area prediction for each class.

Labels N = 1 2 3 4 5 6 7

sky 8.5 12.1 12.8 14.7 14.7 9.9 14.4
building 76.4 77.3 77.2 77.1 77.1 77.0 76.7
pole 16.3 19.3 19.9 19.3 16.9 19.2 21.6
road 76.0 75.8 75.9 75.7 75.6 75.7 75.7
terrain 58.9 60.4 60.8 60.5 59.9 60.1 60.4
vegetation 38.1 36.0 34.0 33.6 34.3 32.5 35.1
traffic sign 12.5 12.6 13.2 14.2 13.9 13.4 14.6
fence 17.4 18.9 19.7 18.8 18.2 18.5 17.4
car 57.8 58.9 59.3 58.6 58.9 58.5 57.5
person 9.4 12.7 13.0 12.4 11.8 12.8 12.0
rider 8.9 8.7 8.9 8.6 7.5 8.1 9.1
drivable path 65.1 64.9 65.2 65.2 65.3 65.3 65.2

mIoU 37.1 38.1 38.3 38.2 37.9 37.6 38.3
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(a) In-vehicle camera images.(b) Ground-truth labelling. (c) Predicted labelling.

Fig. 10. Examples of prediction results.
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5 Conclusion

In this paper, we proposed a method to acquire training labels of scene-adaptive
driving area automatically from driving information of the in-vehicle camera
image, own vehicle’s speed, and location. Here, the training labels are acquired
by using the actual trajectory of the own vehicle. According to the own vehicle
speed, the proposed method generates the label of the scene-adaptive driving
area reflecting the driving context. We also proposed a scene-adaptive driving
area predictor based on the semantic segmentation model introducing ConvL-
STM trained with the acquired training data.

To evaluate the proposed method, we created 5,650 labels and predicted the
scene-adaptive driving area by the proposed method with 65.3%. We also con-
firmed the effectiveness of considering the movement of the surrounding object.

Future work will include an improvement of scene-adaptive driving area pre-
diction, an enhancement of the network structure, and experiments using a larger
dataset including various patterns of the scene-adaptive driving area.
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