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Abstract—In this paper, we propose an occlusion-robust pose
estimation method of an unknown object instance in an object
category from a depth image. In a cluttered environment, objects
are often occluded mutually. For estimating the pose of an object
in such a situation, a method that de-occludes the unobservable
area of the object would be effective. However, there are two
difficulties; occlusion causes the offset between the center of the
actual object and its observable area, and different instances
in a category may have different shapes. To cope with these
difficulties, we propose a two-stage Encoder-Decoder model to
extract features with objects whose centers are aligned to the
image center. In the model, we also propose the Median-shape
Reconstructor as the second stage to absorb shape variations in a
category. By evaluating the method with both a large-scale virtual
dataset and a real dataset, we confirmed the proposed method
achieves good performance on pose estimation of an occluded
object from a depth image.

I. INTRODUCTION

In recent years, robots for daily life support are actively
developed. A life support robot should be equipped with a
fundamental function of holding and carrying an object which
is directed by a person, such as a mug. For realizing the
function, object grasping is one of the important sub-tasks
in the robotics field. For object grasping, it is necessary to
not only detect the target object but also estimate its pose
accurately. However, there is a situation where objects are
densely located, such as on a cluttered table. Since objects
occlude each others in such situations, pose estimation of each
of them becomes difficult. Considering this problem, in this
paper, we tackle the pose estimation problem of an occluded
object.

Robots are generally equipped with an RGB image sensor
or a depth image sensor to observe the surroundings. In
particular, depth image sensors are robust to variations in
color and lighting conditions and can be used to easily detect
object regions. Thus, in this paper, we deal with depth images
captured by a depth image sensor.

For estimating the pose of an object from an image, it is
common to extract an object region from the entire image
(Fig. 1(a)). In pose estimation methods using an image [1],
[5], features are extracted from images of different instances
in a category. However, these methods do not consider that
the observed object is severely occluded. In case the object in
an input image is occluded (Fig. 1(b)), the extracted feature
will be affected by the occlusion pattern.
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Fig. 1. Change of the observable area caused by occlusion.

Fig. 2. Shape variations within a category.

On the other hand, in an occlusion-robust pose estimation
method proposed by Sundermeyer et al. [2], features are
extracted by an Augmented Autoencoder. The Augmented
Autoencoder is trained to output the complete object in the
image center from a perturbated image containing the object
such as occlusions, different kinds of background clutter, and
dynamic changes of the environment. However, this method is
trained only on synthetic views of a known 3D model and is
not compatible with unknown objects in a category. We call
this kind of pose estimation task as instance-level, which is
defined as follows:

• An object having specific color and shape is only con-
sidered.

• Its exact CAD model and its size are available before-
hand.

In contrast, in this paper, we consider multiple objects in a
category. We call this kind of pose estimation task as category-
level, which is defined as follows:

• Objects having various colors and shapes in a category
are considered. (Fig. 2)

• Unknown objects without known CAD models are tar-
geted.
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The goal is to realize occlusion-robust pose estimation in the
category-level.

When we consider extending existing methods to category-
level pose estimation, there are two difficulties. One is that
occlusion causes an offset between the center of the actual
object and its observable area. The other is that different
instances in a category may have different shapes (Fig. 2). To
tackle the first difficulty, we propose the two-stage Encoder-
Decoder model that separates de-occlusion and feature extrac-
tion. De-occluding the complete region of the target object
at the first stage makes it easy to align the object center
to the image center accurately. Meanwhile, to tackle the
second difficulty, as the second stage, we propose the Median-
shape Reconstructor that is trained to decode the depth image
containing a representative shaped object in the category in the
same pose. Here, the median-shaped object in the category is
selected as the representative shaped object. The object can
be easily reconstructed from objects of various shapes. The
Median-shape Reconstructor can absorb shape variations in
the category.

The main contributions of this work are summarized as
follows:

• We propose the two-stage Encoder-Decoder model to
extract features of a de-occluded object whose center is
aligned to the image center.

• We propose the Median-shape Reconstructor as the sec-
ond stage to absorb shape variations in a category.

• We demonstrate the performance of the proposed method
by evaluating it on a large-scale virtual dataset and a real
dataset.

In this work, assuming objects are placed on a table, the
input is a depth image of a target object whose upper, lower,
left, or right side is occluded by another object, and the ratio
of the occluded region is at most half of the target object.

The rest of this paper is organized as follows: In Section II, a
brief survey is provided. In Section III, details of the proposed
method are introduced. Experimental results are reported in
Section IV, and a detailed discussion is provided in Section V.
Finally, we conclude this paper in Section VI.

II. RELATED WORK

A. Object Pose Estimation from Sensory Data
Object pose estimation methods for a robot are classified

into RGB image-based approaches [1], [2], [3], [4], depth
image-based approaches [1], [5], [6], point cloud-based ap-
proaches [7], and voxel-based approaches [8] according to
data representation. Among them, RGB and depth image
representations are practical, since such sensors are mounted
on life support robots commonly.

In the RGB image-based approaches, an object pose is
estimated from the brightness values of the image. On the
other hand, in the depth image-based approaches, an object
pose is estimated from the 3D shape represented by depth
values to the target object. The depth image-based approaches
have the following advantages against the RGB image-based
approaches:

• Robust to variations in object texture, background distur-
bance, and changes in lighting conditions.

• Easy to extract the target object region.
Therefore, in this paper, we take the depth image-based
approach.

B. Image-based Object Pose Estimation

For image-based pose estimation, estimating the pose from
features extracted from an input image is a common ap-
proach [9]. The template matching method is one of the
earliest image-based methods [10]. This method utilizes many
templates of the target object captured from various viewpoints
beforehand, and the pose estimation result is selected from the
best-matched template.

To reduce the number of templates, Murase and Nayer
proposed the Parametric Eigenspace method [4]. This method
represents the continuous pose change of an object by tem-
plates on a manifold in a low-dimensional subspace obtained
by Principal Component Analysis (PCA). By interpolating the
template of the target object on the manifold, the method real-
izes accurate object pose estimation even with few templates.
However, since the method is based on PCA, which is an
unsupervised learning method, it does not fully utilize the pose
information for estimating the object’s poses.

Recently, Ninomiya et al. [5] proposed a category-level pose
estimation method from a depth image. They focus on Deep
Convolutional Neural Networks (DCNNs) [11], which is one
of the deep-learning models, as a supervised learning method
for manifold embedding. They modify DCNNs for object pose
estimation, named Pose-CyclicR-Net, which can accurately
handle object rotation in the same category by describing the
rotation angle using trigonometric functions. However, this
method does not deal with the pose estimation of an occluded
object.

In the case of object pose estimation by a DCNN-based
model, feature vectors must be extracted from only the pixel
values of the observable part of the object. Thus, when
the object is occluded, the feature vector is affected by the
occlusion. If a feature vector of the original unoccluded object
could be extracted, a pose of the occluded object can be
estimated by the same method for an unoccluded object. To
extract such feature vectors, Sundermeyer et al. [2] proposed
the Augmented Autoencoder, which is a generalized version
of the Denoising Autoencoder [12]. They realize feature
extraction from the entire object region de-occluded from an
observed image with some defects in the object, background
disturbance, or different lighting conditions. Although this
method is effective when a small part of a specific object is
occluded, it is not suitable for category-level pose estimation,
and in case a large part of the object is occluded.

III. TWO-STAGE ENCODER-DECODER MODEL

The goal of this paper is the category-level occlusion-robust
object pose estimation in cluttered environments. To achieve
this goal, we propose a two-stage Encoder-Decoder model to
extract features of a de-occluded object whose center is aligned
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Stage 1 : De-occluding Autoencoder

Stage 2 : Median-shape Reconstructor
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Fig. 3. Proposed two-stage Encoder-Decoder model. The input is a depth image containing the occluded target object. The De-occluding Autoencoder
de-occludes the occluded part of the object. Then, the complete region of the object is extracted from the de-occluded image. Next, the Median-shape
Reconstructor extracts feature vectors to decode the depth image containing the same pose of the median-shaped object in the category from the extracted
region.
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Fig. 4. Model based on Augmented Autoencoder [2].

to the image center. Fig. 3 illustrates the proposed two-stage
Encoder-Decoder model. The previous model based on Aug-
mented Autoencoder [2] (Fig. 4) does not consider the offset
between the center of the actual object and its observable area.
This leads to a problem that extracted features are different due
to the shift of object center inside the observable region. On the
other hand, the first stage Encoder-Decoder model named De-
occluding Autoencoder in the proposed method de-occludes
the occluded part of the object considering the offset. This
allows us to explicitly specify which side of the object is being
occluded. Besides, the second stage Encoder-Decoder model
extracts feature vectors from the complete region of the object.

To absorb shape variations within a category, we propose the
Median-shape Reconstructor as the second stage. The Median-
shape Reconstructor is trained to reconstruct the same pose of
the median-shaped object, which is the representative shaped
object in the category.

A. Pose Representation Learning

The two models in the two-stage Encoder-Decoder model
are trained sequentially. We first train the De-occluding Au-
toencoder to de-occlude the occluded part of the object,
considering the offset between the object center and the
image center. We then train the Median-shape Reconstructor
to decode the depth image containing the same pose of the
median-shaped object in the category. As input, a cropped
image from the output of the De-occluding Autoencoder is
taken.

1) Pseudo Occluding Process: In this work, we assume
that the input is a depth image of a target object in which

either the upper, lower, left, or right part of the object is
occluded by another object. Here, the object region is extracted
from the input image, and pixel values of the background
are set to 0. For training the Encoder-Decoder model with
such images, we need pairs of variously occluded images and
corresponding target images as input. Therefore, we propose
a data augmentation method by pseudoly occluding the ob-
ject. To generate images whose target objects are variously
occluded, we virtually occlude objects in H×W [pixels] depth
images. The occluded part is randomly selected. The occlusion
ratio to the object is r (0 < r < 0.5). After the object is
occluded, the image size will be H × W (1 − r) [pixels] if
it is occluded horizontally or H(1 − r) × W [pixels] if it is
occluded vertically. Then the image is expanded to H × W
[pixels] by padding the background pixels while keeping the
center of the unoccluded part of the object at the image center.
Finally, the background in the image is padded to 3

2H × 3
2W

[pixels] to be able to de-occlude most part of the object in
the depth image. We call this procedure the pseudo occluding
process.

2) De-occlusion Learning: The previous work [2] does not
consider the offset between the center of the actual object
and its observable area. However, it is difficult to de-occlude
the occluded part of the object and correct the position shift
simultaneously. To tackle the difficulty, in this work, the De-
occluding Autoencoder is trained to keep the position of the
unoccluded region of the object. It can de-occlude the object
accurately regardless of the offset.

Fig. 5 illustrates the training of the De-occluding Autoen-
coder. First, the input image Iin1 is prepared according to the
pseudo occluding process (Fig. 5 (1)). The target image Itar1
is also prepared by expanding the background of the original
image Iorg considering the offset between the object center and
the image center (Fig. 5 (2)). The De-occluding Autoencoder
outputs the de-occluded image Iout1 of the input image Iin1
(Fig. 5 (3)). For minimizing the difference between Iout1 and
Itar1 (Fig. 5 (4)), the parameters are optimized.

3) De-occlusion and Alignment: After the training, the
De-occluding Autoencoder will output a de-occluded image
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Fig. 8. Pose estimation based on the pose manifold.

(Fig. 8(a)) according to the pose of the object. By applying
this procedure on multiple object instances, a set of feature
vectors µ = {V1,V2, · · · } is obtained. In Fig. 8(a), the
different colors of the feature vectors indicate the vectors
extracted from the different object instances. As the Median-
shape Reconstructor absorbs the shape variation in a category,
feature vectors corresponding to the same pose of different
objects are expected to be the same.

In the pose estimation phase, a feature vector vt is extracted
from a target depth image. The pose is estimated by the Near-
est Neighbor algorithm with the feature vectors V1,V2, · · ·
with pose labels. The pose estimator search for the nearest
neighbor vector v̂ from the set of vectors µ as:

v̂ = argmin
v∈Vx,Vx∈µ

∥v − vt∥ (4)

Finally, the pose estimator outputs the pose corresponding to
the nearest neighbor vector v̂.

IV. EVALUATION

In order to evaluate the proposed method, we prepared
datasets and performed experiments.

A. Dataset

We prepared a large-scale virtual dataset and a real dataset
for the evaluation.

1) Large-scale Virtual Dataset: Depth images were ren-
dered from 3D models of 105 mugs included in ShapeNet [13]
as the virtual data set. For the 3D model of each mug, virtual
depth images were generated by fixing the elevation angle of
the camera and rotating the camera around the vertical axis
with an interval of 1◦. They were then scaled to 128 × 128
pixels. Assuming the camera is mounted on a robot, the
elevation angle was set to the following three conditions: 10◦,
30◦, and 50◦. Images from which we could not determine the
pose of the object were excluded.

2) Real Dataset: Five different kinds of mugs were placed
on a turntable one by one. Both color images and depth images
were captured with an RGB-D image sensor Xtion PRO LIVE
while rotating the turntable around the vertical axis with an
interval of 1◦. The distance between the depth image sensor
and the target object was set to 65 cm, and the elevation angle
was set to the following three conditions: 10◦, 30◦, and 50◦.

As preprocessing, a mug was first detected from each
color image using YOLOv3 [14] and a bounding box was

obtained. To remove the background, the background plane
was estimated by the least-squares method using the depth
values sampled from the region of the turntable. The region
of the object in the depth image was cropped and scaled to
128× 128 pixels.

B. Experimental Setting

The Encoder and the Decoder were constructed with five
Convolution layers in each Encoder-Decoder model. The mean
square error was used as the loss function and Adam as the
optimizer in training the models. The proposed method was
evaluated in two settings: Evaluation on the large-scale virtual
dataset, and evaluation on the real dataset.

1) Setting 1: Our model was trained and the methods
were evaluated on the large-scale virtual dataset. For the
De-occluding Autoencoder and Median-shape Reconstructor
training, the depth images from the 3D models of 100 mugs
were used. A total of 25,100 / 27,100 / 36,000 images for
elevation angles of 10◦ / 30◦ / 50◦, respectively, were used.
The models were trained with the pseudo occluding process
with random occlusion ratios and parts.

For the pose estimator training, depth images from the 3D
models of the 30 mugs among 100 mugs were used for the
models. Five images were augmented by running the pseudo
occluding process five times for each image with random
occlusion ratios and parts. A total of 37,650 / 40,650 / 54,000
images for elevation angles of 10◦ / 30◦ / 50◦, respectively,
were used.

For evaluation, depth images from the 3D models of the five
mugs with an interval of 10◦ out of 100 mugs were used for
training the models. The pseudo occluding process was run
once for each image. A total of 117 / 124 / 152 images for
elevation angles of 10◦ / 30◦ / 50◦, respectively, were used.

2) Setting 2: Our model was trained on all of the large-scale
virtual dataset and four mugs in the real dataset. The methods
were evaluated on the rest of the mugs in the real dataset
and repeated the validation while changing the combination
of mugs in the real dataset (five-fold cross-validation). A total
of 1,540 / 1,760 / 1,727 real images for elevation angles of
10◦ / 30◦ / 50◦, respectively, were used.

For the De-occluding Autoencoder and Median-shape Re-
constructor training, depth images from the 3D models of the
100 mugs and four real mugs with an interval of 1◦ were used.
The models were trained while running the pseudo occluding
process with random occlusion ratios and parts.

For the pose estimator training, depth images from the 3D
models of 30 mugs among 100 mugs for the models training
and four real mugs with an interval of 1◦ were used. Five
images were augmented by running the pseudo occluding
process five times for each image with random occlusion ratios
and parts.

For evaluation, depth images were used from the mug out
of the four real mugs for training the models with an interval
of 10◦. The pseudo occluding process was run once for each
image.
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TABLE I
POSE ESTIMATION RESULTS IN SETTING 1

MAAE [◦] ↓ 95% MAAE [◦] ↓ w/in 5◦[%] ↑ w/in 10◦[%] ↑
Elevation angle [◦] 10 30 50 10 30 50 10 30 50 10 30 50

PCR-Net [5] 3.56 4.14 13.91 3.07 3.73 7.06 74.4 71.8 50.7 96.6 97.6 76.3
AAE [2] 15.55 11.44 9.29 8.63 7.10 5.72 53.8 50.0 52.6 74.4 72.6 79.6
Proposed 3.02 3.50 2.04 2.67 2.91 1.78 88.6 83.1 94.7 98.3 96.0 100.0

Input Output

10° 30° 50°

(a) Large-scale virtual dataset (b) Real dataset 

AAE [2]

Proposed

(First-stage)

Proposed

(Second-stage)

Elevation angle

Input Output Input Output Input Output

10° 30° 50°

Input Output Input Output

Fig. 9. Visualization results.

C. Metrics

To evaluate the estimated rotation angle around the vertical
axis quantitatively, we calculated the absolute angular errors
between the pose estimation results and the true poses. The
Mean Absolute Angle Error (MAAE) was used as the metric.
As the MAAE is often affected by outliers (results with the
estimated poses far apart from the true pose), we also used
the 95% MAAE as a metric. The metric is calculated while
excluding the upper 5% outliers. By considering an application
that a robot grasps an object, we also evaluated the ratio of
absolute angle error within 5◦ (w/in 5◦) and 10◦ (w/in 10◦).
Besides, we visualized the ratio of absolute angle error within
n◦ (0 ≤ n ≤ 20, n ∈ Z) in graphs.

D. Comparative Methods

We evaluated two comparative methods A1 and A2, together
with the proposed method.

• Comparative method A1 is based on Pose-CyclicR-
Net [5], where features are extracted by a regression
model based on a DCNN trained with our dataset. This
method is abbreviated as PCR-Net.

• Comparative method A2 is based on Augmented Au-
toencoder [2], where features are extracted by the model
based on Augmented Autoencoder (Fig. 4) trained with
our dataset. This method is abbreviated as AAE.

E. Results

1) Setting 1: Fig. 9 shows visualization results using the
Encoder-Decoder model. By comparative method A2 (AAE),
the target object cannot be de-occluded accurately because
such occlusions in the input image are not originally assumed.
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Fig. 10. Absolute angular error in setting 1.

On the other hand, in the first stage of the proposed method,
the object can be de-occluded accurately by expanding the
background and keeping the position of the unoccluded region
of the object. As the second stage of the proposed method, the
same pose of the median-shaped object can be reconstructed.

Table I shows the pose estimation results in setting 1. The
proposed method achieves the best performance on most items.
Fig. 10 shows the ratio of absolute angle error within n◦ (0 ≤
n ≤ 20, n ∈ Z) in setting 1. The proposed method is more
effective than the comparative method for elevation angle 50◦.

2) Setting 2: In Fig. 9, the de-occlusion of images in the
real dataset is more difficult than that of images in a virtual
dataset caused by the noisy observation values unique to the
real dataset. Actually, by comparative method A2 (AAE), the
occluded region is not well de-occluded in the case of the real
dataset than that of the virtual dataset. On the other hand, by
the proposed method, the Median-shape Reconstructor outputs
the median-shaped object in the virtual dataset from the target
object in the real dataset. The Encoder-Decoder model can
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TABLE II
POSE ESTIMATION RESULTS IN SETTING 2

MAAE [◦] ↓ 95% MAAE [◦] ↓ w/in 5◦[%] ↑ w/in 10◦[%] ↑
Elevation angle [◦] 10 30 50 10 30 50 10 30 50 10 30 50

PCR-Net [5] 5.81 6.21 5.19 5.08 5.46 4.87 60.3 53.2 57.3 82.5 79.8 92.7
AAE [2] 19.42 17.85 14.18 14.27 10.61 8.03 50.8 43.6 61.3 69.8 73.4 83.1
Proposed 7.61 5.15 4.27 3.98 4.67 3.19 74.6 61.7 74.2 88.9 94.7 96.8

TABLE III
POSE ESTIMATION RESULTS FOR THE SECOND STAGE

MAAE [◦] ↓ 95% MAAE [◦] ↓ w/in 5◦[%] ↑ w/in 10◦[%] ↑
Elevation angle [◦] 10 30 50 10 30 50 10 30 50 10 30 50

DAE + PCR-Net 4.60 5.39 8.85 4.08 4.83 5.15 71.4 57.4 61.3 93.7 88.3 84.7
DAE + AAE 5.47 7.26 7.17 4.32 6.13 4.84 58.7 47.9 65.3 90.5 85.5 83.1
Proposed 7.61 5.15 4.27 3.98 4.67 3.41 74.6 61.7 74.2 88.9 94.7 96.8
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Fig. 11. Absolute angular error in setting 2.

reconstruct the object accurately since the variation of the
output images is smaller.

Table II shows the pose estimation results in setting 2. The
proposed method achieves the best performance on most items
also with the real dataset. Fig. 11 shows the ratio of absolute
angle error within n◦ (0 ≤ n ≤ 20, n ∈ Z) in setting 2. The
proposed method is also effective for the real dataset.

Through this evaluation, we demonstrated the effectiveness
of the proposed two-stage Encoder-Decoder model.

V. DISCUSSION

A. Effectiveness of the Median-shape Reconstructor

To demonstrate the effectiveness of the Median-shape Re-
constructor, we evaluated the second stage of the two-stage
Encoder-Decoder model in setting 2. We evaluated two com-
parative methods B1 and B2, together with the proposed
method. For each of the methods, the first stage of the two-
stage model was fixed as the Deoccluding Autoencoder. The
detail of the comparative methods is as follows:

• Comparative method B1 is based on Pose-CyclicR-
Net [5], where the features are extracted by a regression
model based on a DCNN trained with the dataset for the
Median-shape Reconstructor. This method is abbreviated
as DAE + PCRNet.

• Comparative method B2 is based on Augmented Au-
toencoder [5], where the features are extracted by the
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Fig. 12. Absolute angular error for the second stage in setting 2.

Augmented Autoencoder trained with the dataset for the
Median-shape Reconstructor. The second stage model
outputs the same pose of the target object instead of the
same pose of the median-shape object. This method is
abbreviated as DAE + AAE.

Table III shows the pose estimation results in setting 2.
Fig. 12 shows the ratio of absolute angle error within n◦ (0 ≤
n ≤ 20, n ∈ Z). The Median-shape Reconstructor achieves
the best performance except for the case of elevation angle
10◦.

Firstly, we compare the proposed method with comparative
method B1 (DAE + PCR-Net). The rotation angle repre-
sented by trigonometric functions is given when the PCR-
Net is trained. On the other hand, the rotation angle and
the median-shape is given as images when the Median-shape
Reconstructor is trained. The Median-shape Reconstructor is
more effective than the PCR-Net since the encoder part of the
model can extract the features which are as close as possible
to features extracted from an object instance, a median-shaped
object.

Secondly, we compare the proposed method with compara-
tive method B2 (DAE + AAE). The only difference between
them is that the AAE outputs the same pose of the target
object, but the Median-shape Reconstructor outputs the same
pose of the median-shaped object.
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TABLE IV
MAAE [◦] IN MULTIPLE CATEGORIES

Category Mug Car Bike Chair

PCR-Net [5] 13.91 2.09 14.36 4.52
AAE [2] 9.29 13.48 61.93 12.99
Proposed 2.04 0.60 10.37 2.44

Car

Chair

Bike

Fig. 13. Dataset with multiple categories.

Through this evaluation, we demonstrated the effectiveness
of the proposed approach in which the proposed Encoder-
Decoder model outputs an object instance.

B. Evaluation in Multiple Categories
We also evaluated the proposed method in multiple cate-

gories other than Mug; Car, Bike, and Chair in setting 1. The
elevation angle was set to 50◦. Fig. 13 shows the examples of
the dataset.

Table IV shows the Mean Absolute Angular Error (MAAE)
in multiple categories. The proposed method achieves the best
performance for all categories in the dataset. We confirmed
that the proposed method is also effective in category-level.

VI. CONCLUSION

In this paper, we proposed an occlusion-robust pose estima-
tion method of an unknown object instance in an object cate-
gory from a depth image. To tackle the difficulty that occlusion
causes an offset between the center of the actual object and
its observable area, we proposed a two-stage Encoder-Decoder
model that separates de-occlusion and feature extraction. To
tackle the difficulty that different instances in a category may
have different shapes, as the second stage, we proposed a
Median-shape Reconstructor that is trained to decode the depth
image containing the same pose of a representative shaped
object in the category. By evaluating the method with both a
large-scale virtual dataset and a real dataset, we confirmed
the proposed method achieves good performance on pose
estimation of an occluded object from a depth image. The
part of the dataset used in the evaluation will be released.

As future work, we need to extend the method so that it can
handle 3D axes rotations. For 3D pose estimation, our dataset
must include an enormous number of depth images. We also
need to improve the method to estimate the pose accurately
with a smaller number of training images.
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