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Analysis on the Relation between Pedestrian’s Attributes and the Driver’s Behavior when Passing by a Pedestrian
Fumito Shinmura Yasutomo Kawanishi Daisuke Deguchi Ichiro Ide Hiroshi Murase Hironobu Fujiyoshi

When passing by a pedestrian, a driver decides the behavior that his/her own vehicle can safely pass by. In this presentation, through analysis
using experienced drivers' driving data, we clarify the factors that are important for a driver's behavior decision. For the analysis, we classified the
driver’s behaviors into three states based on the operation of the acceleration and brake pedals. We estimate these driver's behaviors from the
pedestrian's attributes by a machine learning-based method. We conducted experiments to estimate the driver's behaviors from various attributes,
and analyzed effective attributes for the estimation. From the results of the analysis, we clarified that the pedestrian's orientation is more important

for the driver's behavior decision than other attributes.
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Fig.1 Outline of the driver’s behavior states.
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Table 1 Estimation results of the driver’s behaviors.

Added attribute Estimation accuracy Number of scenes Number of scenes
(Correct classification rate) the accuracy was improved the accuracy was degraded
No (only location) 49.6
Body orientation 55.9 50 29
Movement amount 51.1 39 34
Action 49.4 33 38
Awareness of the vehicle 54.3 46 33
Age 512 43 34
Existence of sidewalk 50.9 37 37
Time until passing by 52.7 44 33
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Blue: Normal state

‘ Orange: Preparatory state ‘

‘ Green: Safe decision state ‘
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Fig.5 Estimated result of the pedestrian facing the vehicle.

Blue: Normal state

‘ Orange: Preparatory state ‘

‘ Green: Safe decision state ‘
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Fig.6 Estimated result of the pedestrian facing the back.
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