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Abstract Along with the development of autonomous driving and Augmented Reality (AR), we need technologies
that can help understanding surrounding environment better. Semantic segmentation, which applies classfication to
every single pixel in an image, is gathering attention as a powerful tool in many fields. While semantic segmentation
with deep learning techniques requires a huge amount of data for training models, building a dataset on our own is
costly. Therefore, we want to use existing datasets instead, while also being able to recognize more classes than a
single dataset provides. In this report, we propose a semantic segmentation method that can augment the classes
on demand using existing datasets. We confirmed the effectiveness of the proposed method with the success of class
augmentation in an evaluation experiment.
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