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Abstract

Transformer has proven effective in the cross-modal recipe

retrieval task. However, previous methods utilize separate

transformers to encode the title, ingredients, and instruc-

tions, resulting in high computational costs that limit de-

ployment on edge devices. Moreover, these methods over-

look the detailed correspondence between recipe compo-

nents and images, leading to insufficient cross-modal inter-

action. To address these issues, we propose a simple and ef-

ficient model called Unified Transformer with Fine-grained

Contrastive Learning (UT-FCL). In each recipe, UT-FCL

first concatenates each of the ingredients and instructions

texts separately into a single text. It connects these two

texts with the original title to form the recipe. Then,

a transformer-based Unified Text Encoder (UTE) encodes

the concatenated texts and title, reducing model memory

and improving encoding efficiency. We also introduce fine-

grained contrastive learning objectives to capture correspon-

dence between recipe components and the image by measur-

ing mutual information. Extensive experiments confirmed

UT-FCL’s effectiveness compared to existing methods.

1. Introduction

We are focusing on learning joint representations for food

images and cooking recipes. Previous studies [2], [3], [15],

[18], [21] have developed methods to learn embeddings for

images and texts, projecting them onto a shared space for

cross-modal recipe retrieval. While these methods have

made progress, they have drawbacks like reliance on pre-

trained text representations [2], [3], [5], [15], [18], [21] and

complex training pipelines with adversarial losses [18], [21].

Some methods [5], [15] require combining independent mod-

els, needing extra care. Recent studies [14], [16] introduced
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Fig. 1 Overview of the existing methods and proposed method.
LPair: Image-Recipe Pair Loss, LTtlCL: Title Contrastive
Learning Loss, LIngCL: Ingredient Contrastive Learning
Loss, and LInsCL: Instruction Contrastive Learning Loss.

transformers [17] for effective text representations in cross-

modal recipe retrieval on the Recipe1M dataset [15]. The

pipeline of these methods is simplified, as shown in Fig. 1(a).

They first use different transformer encoders to encode the

recipe components, and then aggregate these features by an

aggregation module to obtain the final recipe feature. Sal-

vador et al. [14] use additional transformers to capture sen-

tence relationships in ingredients and instructions for com-

pact features. Shukor et al. [16] extend this with more

transformers to capture component relationships and intro-

duce a multi-modal regularization module. While achieving

good retrieval performance, these methods have higher com-

putational requirements, challenging deployment on edge

devices. In addition, previous methods focus on pairwise

correspondence, overlooking fine-grained alignment between

recipe components and images. Capturing this alignment

can significantly enhance retrieval performance.

To address the aforementioned issues, we propose UT-

FCL, a cross-modal recipe retrieval system based on Unified

Transformer with Fine-grained Contrastive Learning. The

goal is to optimize the trade-off between computational cost

and task performance (Fig. 1(b)). UT-FCL concatenates

the ingredients and instructions texts with the title, creat-

ing concatenated recipe components. These texts and the

title are then encoded by a shared transformer encoder called

Unified Text Encoder (UTE), significantly reducing compu-

tational cost.

Additionally, we introduce Contrastive Learning (CL) [7],
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Title        : Mac n cheese skillet

Ingredients        :
① 2 cups elbow macaroni 
② 1-1/2 cups water 
③ 2 tbsp. sweet onion 
     ......
Instructions        :
① Cook macaroni according to 
package directions.
② Melt butter over medium heat. 
③ Add onion and saute for 2 minutes. 
     ......

Concatenated Ingredients          :
2 cups elbow macaroni  1-1/2 cups 
water 2 tbsp. sweet onion 
     ......

Concatenated Instructions         :
Cook macaroni according to package 
directions. Melt butter over medium 
heat. Add onion and saute for 2 
minutes. 
     ......

Mac n cheese skillet 2 cups elbow 
macaroni 1-1/2 cups water 2 tbsp. 
sweet onion Cook macaroni 
according to package directions. 
Melt butter over medium heat. Add 
onion and saute for 2 minutes. 
     ......
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Fig. 2 Overview of the proposed UT-FCL model. It is composed of three distinct parts;
ϕImg: Image encoder for encoding images, ϕUni: Unified text encoder for encod-
ing recipe components and recipes, and LPair, LRec, LTtlCL, LIngCL and LInsCL:
Training objectives, ”+”: Concatenation operation.

[8], [19] at different levels: Title Contrastive Learning

(TtlCL), Ingredient Contrastive Learning (IngCL), and

Instruction Contrastive Learning (InsCL) (Fig. 1(b)).

TtlCL enhances fine-grained cross-modal interaction be-

tween title and image features. It treats title-image pairs as

positive samples and the others as negative samples, increas-

ing the Mutual Information (MI) of positive samples while

decreasing the MI of negative samples. Similarly, IngCL and

InsCL consider ingredient and instruction pairs with images

as positive samples, enhancing the MI of positive samples

while decreasing the MI of negative samples in the joint fea-

ture space. These contrastive learning objectives guide the

model to capture the fine-grained correspondence between

recipe components and the image, facilitating the learning

of discriminative features.

To sum up, the main contributions of our work are:

• We propose a novel pipeline utilizing a unified trans-

former; UTE, to directly encode the entire recipe and its

components (title, ingredients, and instructions), reduc-

ing model memory and improving encoding efficiency.

• We propose fine-grained CL objectives; TtlCL, IngCL,

and InsCL, to capture the fine-grained correspondence

between recipe components and the image at each of

the title, ingredient, and instruction level by measuring

MI between recipe text and image at each level.

• We perform extensive experimentation and ablation

studies to demonstrate the effectiveness of UT-FCL

compared to state-of-the-art methods.

2. Learning Image-Recipe Embeddings

UT-FCL learns image-recipe embeddings on a dataset

with N pairs of samples (xn
I , x

n
R). Each sample consists

of an RGB image xI and its corresponding recipe text xR,

which includes a title, ingredients, and instructions. The

proposed method is illustrated in Fig. 2. UT-FCL uses an

Image Encoder (IE) and a Unified Text Encoder (UTE) to

encode images and recipe texts, respectively. The embed-

dings are aligned using the LPair loss and fine-grained con-

trastive learning losses (LTtlCL, LIngCL, and LInsCL). In

addition, UT-FCL considers the case of a recipe-only sam-

ple during training. A self-supervised recipe loss (LRec) is

used for recipe components. Details are provided below.

2.1 Image Encoder (IE) ϕImg

The aim of IE is to learn a mapping function enI =

ϕImg (x
n
I ), which transforms the input image xn

I to embed-

ding enI in the joint image-recipe embedding space. To ac-

complish this, since the image encoder is a replaceable mod-

ule, we explore the usage of three networks: ResNet-50 [9],

ResNeXt-101 [20], and Vision Transformer (ViT) [4]. Fi-

nally, we obtain an image embedding enI .

2.2 Unified Text Encoder (UTE) ϕUni

UTE aims to learn a mapping function ϕUni that projects

the input recipe and its components onto a joint embedding

space for direct comparison with the image embedding enI .

Recent methods [14], [16] employ transformer [17] instead

of LSTM [10] to encode recipes, leveraging their widespread

use and superior performance in natural language process-

ing tasks. These methods utilize specialized transformers for

each recipe component and additional transformers to cap-

ture relationships between sentences or recipe components.

However, they come with increased computational cost. In

contrast, UT-FCL utilizes UTE to process recipes and com-

ponents efficiently and concisely.

Given a word token sequence s =
(
w0, . . . , wK−1

)
whose

component represents a word and K is the total number of

words, UT-FCL aims to obtain a meaningful fixed-length

representation for cross-modal recipe retrieval. In conjunc-

tion with Fig. 2, the original recipe xR consists of three

components: title, ingredients, and instructions. The title

is a single sentence, denoted as xTtl = sTtl, while the ingre-

dients and instructions are sequences of sentences, denoted

as xIng =
(
s0Ing, . . . , s

M−1
Ing

)
and xIns =

(
s0Ins, . . . , s

O−1
Ins

)
,

where M and O represent the number of sentences in the

ingredients and instructions, respectively. The concatena-
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Fig. 3 Proposed transformer-based Unified Text Encoder (UTE).
Given a recipe or recipe component including K + 1 word
tokens, UTE encodes it into a fixed-length representation.

tion of texts is denoted as [·; ·; ]. Specifically, UT-FCL

concatenates multiple sentences of ingredients and instruc-

tions into the concatenated ingredients x̂Ing and instruc-

tions x̂Ins, represented as x̂Ing =
[
s0Ing; . . . ; s

M−1
Ing

]
and

x̂Ins =
[
s0Ins; . . . ; s

O−1
Ins

]
. Next, UT-FCL connects the ti-

tle xTtl and the concatenated ingredients x̂Ing and instruc-

tions x̂Ins to obtain the concatenated recipe components

x̂R = [xTtl; x̂Ing; x̂Ins].

Considering the training flexibility, we use the trans-

former [17] as UTE for encoding recipes and recipe compo-

nents. UT-FCL encodes these four items with a transformer

network of 4 layers of dimension D = 512, each with 8 at-

tention heads, using learned positional embeddings in the

first layer. The representation for each item is the average

of the outputs of the transformer at the last layer. Figure 3

shows the schema of the proposed transformer-based UTE.

Thus, UTE extracts all items’ embeddings as:

eTtl, eIng, eIns, eR = ϕUni (xTtl, x̂Ing, x̂Ins, x̂R)

= UTE (xTtl, x̂Ing, x̂Ins, x̂R, θ) ,
(1)

where θ denotes UTE parameters.

2.3 Fine-grained Contrastive Learning

To capture the fine-grained correspondence between

recipe components and the image, we introduce Contrastive

Learning (CL) objectives: TtlCL, IngCL, and InsCL, cor-

responding to the title, ingredient, and instruction levels.

These objectives guide the image and unified encoders to

distinguish between matching and non-matching entities in

the joint feature space. They aim to decrease the distance of

matching component-image pairs and increase the distance

of non-matching pairs. Since the principles of the three ob-

jectives are similar, we focus on explaining TtlCL. UT-FCL

can obtain LIngCL and LInsCL in a similar manner.

Specifically, we consider a positive pair (eTtl, eI) consist-

ing of the title of a recipe and the image. The negative pairs

are divided into two types: (e′Ttl, eI) and (eTtl, e
′
I), where

the non-corresponding title e′Ttl and the image eI , and the

title eTtl and the non-corresponding image e′I form a neg-

ative pair (e′Ttl, eI) and (eTtl, e
′
I), respectively. We denote

this uniformly as (e′Ttl, e
′
I). Thus, UT-FCL can sample to

obtain a set containing positive samples P = {(eTtl, eI)}
and a set containing negative samples N =

{(
e′Ttl, e

′
I

)}
.

Then we utilize Noise-Contrastive Estimation (NCE) [6] to

compute the TtlCL score as:

T = log

(
E(P)

E(P) + E(N )

)
, E(A) =

∑
(e1,e2)∈A

ef(e1)
⊤·g(e2),

(2)

whereA ∈ (P,N ), ef(e1)
⊤·g(e2) calculates the Mutual Infor-

mation (MI) [1], [11] of e1 and e2. f(·) and g(·) denote the

parameter mapping that maps video and query representa-

tions to a uniform feature space. The optimization of NCE

is essentially maximizing the ratio of MI of positive samples

to all samples [13]. The TtlCL loss is LTtlCL = −T .

2.4 Supervised, Self-supervised, and Final Loss

Supervised Loss LPair: For image-recipe pairs, following

H-T [14], the supervised loss LPair is defined. It employs the

bi-directional triplet loss [18] on fixed-sized representations

eI and eR extracted from the image and recipe. Positive and

negative samples are considered within a batch, and the loss

is computed as an average over all samples.

Self-supervised Loss LRec: To handle the noisy dataset

with recipe data lacking corresponding images, following H-

T, we introduce a self-supervised recipe loss LRec. It com-

putes the bi-directional triplet loss on embedded features,

considering different recipe components. The loss encour-

ages the model to utilize both image-recipe pairs and recipe-

only data and further improves the retrieval performance of

the model.

Final Loss L: The final training loss for UT-FCL is:

L =λ1LPair + λ2LRec

+λ3LTtlCL + λ4LIngCL + λ5LInsCL.
(3)

The hyperparameters denoted as λi are used to balance the

impact of each loss.

3. EXPERIMENTS

3.1 Dataset and Metrics

The Recipe1M dataset [15] was utilized for training and

evaluating the models, following previous studies [5], [14],

[16]. The dataset was split into training, validation, and

testing sets, consisting of a total of 238,999, 51,119, and

51,303 image-recipe pairs, respectively. Additionally, the

self-supervised recipe loss was integrated using the recipe-

only portion of the dataset, contributing 482,231 samples

for training.

For evaluation, similar to previous studies [5], [14], [16],

the retrieval performance was assessed using metrics such

as median rank (medR) and Recall@{1, 5, 10} (R1, R5, and

R10) on different ranking sizes (N = {1k, 10k}). To en-

sure reliability, the average metrics were calculated across

10 randomly chosen groups of N samples.

3.2 Comparison to Existing Methods

We compared the performance of the proposed method

with those of existing methods in Table 1. To ensure a fair

comparison, we used the same IE as the compared meth-

ods. Generally, ResNet-50 was employed as the IE, and for

H-T and T-food, we also presented metrics using the ViT

encoder. From Table 1, it is evident that UT-FCL with
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Table 1 Comparison with other methods. medR and Recall@k
are reported on the Recipe1M test set. Best metrics
are in bold, and the second best metrics are underlined.
ViT: Vision Transformer. Ranking Size: N = 1k.

Method
Image-to-Recipe

medR ↓ R1 ↑ R5 ↑ R10 ↑
M-SIA [12] 1.0 59.3 86.3 92.6
DaC [5] 1.0 55.9 82.4 88.7
H-T [14] 1.0 60.0 87.6 92.9

UT-FCL 1.0 61.6 87.9 93.2

H-T (ViT) [14] 1.0 64.2 89.1 93.4
T-Food (ViT) [16] 1.0 68.2 87.9 91.3

UT-FCL (ViT) 1.0 68.1 90.0 94.5

Table 2 Effects of different objectives on the Recipe1M dataset.
Best metrics are in bold. Ranking Size: N = 10k

Objective Image-to-Recipe
TtlCL IngCL InsCL medR ↓ R1 ↑ R5 ↑ R10 ↑

5.1 23.4 50.6 62.9

" 4.0 27.7 55.2 66.6

" 4.0 28.5 55.9 67.3

" 4.0 27.8 55.5 66.9

" " 4.0 30.0 57.9 69.1

" " 4.0 28.3 56.0 67.3

" " 4.0 29.6 57.2 68.6

" " " 3.6 30.7 58.5 69.6

ResNet-50 as the IE outperformed existing methods across

most metrics. When using ViT as the image encoder, our

method achieved competitive results compared to H-T and

T-Food, performing best or closely in all metrics. T-Food

incorporates additional transformers to capture recipe com-

ponent relationships, building complex structures that en-

hance performance but require higher computational cost.

In contrast, the proposed method utilizes a simpler encoder

structure, delivering superior retrieval performance with re-

duced computing requirements.

3.3 Ablation Studies

Learning Objectives Analysis : Table 2 shows the con-

tributions of different training objectives on the Recipe1M

dataset. Baseline represents LPair + LRec objectives, and

UT-FCL includes all five objectives. ResNet-50 served as

the image encoder for all variants. UT-FCL with all losses

achieved the best performance, indicating the effectiveness

of the proposed CL objectives in enhancing retrieval per-

formance by capturing the fine-grained correspondence be-

tween recipe components and images.

Image Encoder Analysis : We assessed the impact of dif-

ferent IE on retrieval performance by comparing DaC and

H-T. Results are presented in Table 3. Comparing the same

method with different IE (Rows 1–2, 3–5, and 6–8), we ob-

served that ViT > ResNeXt-101 > ResNet-50, with ViT

achieving the best performance.

Unified Text Encoder Analysis : UTE is a single trans-

former network, and we examined the influence of attention

heads and layers on retrieval performance. Table 4 shows

the results, where all variants used ResNet-50 as the IE.

The findings suggest that increasing the number of heads

has a more significant impact on retrieval performance than

increasing the number of layers. Hence, the number of at-

tention heads and layers in UTE plays a crucial role. To en-

Table 3 Comparison of different image encoders. Image-to-
Recipe retrieval results reported on the test set of
Recipe1M, with rankings of size N = 10k.

Method medR ↓ R1 ↑ R5 ↑ R10 ↑
DaC [5] (ResNet-50) 5.0 26.5 51.8 62.6
DaC [5] (ResNeXt-101) 4.0 30.0 56.5 67.0

H-T [14] (ResNet-50) 4.0 27.9 56.4 68.1
H-T [14] (ResNeXt-101) 4.0 28.9 57.4 69.0
H-T [14] (ViT) 3.0 33.5 62.1 72.8

UT-FCL (ResNet-50) 3.6 30.7 58.5 69.6
UT-FCL (ResNeXt-101) 3.0 31.6 60.1 71.0
UT-FCL (ViT) 2.7 37.4 65.4 75.4

Table 4 Comparison of different Unified Text Encoder (UTE)
settings. Experimental results reported on the test set
of Recipe1M, with rankings of size N = 10k.

Head# Layer#
Image-to-Recipe

medR ↓ R1 ↑ R5 ↑ R10 ↑
4 2 4.0 27.9 55.2 66.5
4 4 4.1 27.5 54.8 66.3
8 4 3.6 30.7 58.5 69.6

Table 5 Comparison with Hierarchical recipe Transformer in
terms of model efficiency and computational cost. Both
methods use ResNet-50 as the image encoder.

Method
# of parameters

Memory
Feature

Recipe Image Extraction
Encoder Encoder Time

H-T [14] 39,998,976 25,606,208 263 MB 5,884.74 s
UT-FCL 21,263,872 24,557,120 181 MB 2,951.90 s

hance performance, an appropriately complex encoder with

sufficient text feature extraction capability should be used.

3.4 Model Efficiency and Computational Cost

We further measured the model efficiency and com-

putational consumption of UT-FCL against the recent

transformer-based H-T, presented in Table 5. We can ob-

serve that UT-FCL greatly outperforms H-T in three met-

rics. UT-FCL adopted simple network structures to achieve

efficient cross-modal retrieval. Thus, it supports the claim

that it requires low computational cost.

4. CONCLUSION

In this paper, we proposed UT-FCL, a simple and efficient

model for cross-modal recipe retrieval. UT-FCL utilizes

a unified transformer-based encoder; UTE, to encode the

entire recipe and its components, reducing model memory

and improving encoding efficiency. We also introduced fine-

grained CL objectives to capture component-image relation-

ships. These objectives guide the IE and UTE to generate

effective representations by maximizing the MI of positive

samples and minimizing that of negative samples. Extensive

experiments on Recipe1M dataset confirmed the efficiency

of UT-FCL. Subsequently, we will focus on cross-modal in-

teraction of recipes and images, and explore ways to extract

more informative features.
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