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Abstract In recent years, advances in pedestrian detection technology have resulted in the development of 

driving assistance systems that notify the drivers of the presence of pedestrians. However, warning of the 

presence of all pedestrians would confuse the driver. Therefore, the driver should only be notified of the less 

detectable pedestrians to avoid confusion. To achieve this, it is necessary to develop a method to predict the 

driver’s perception performance of pedestrian detectability. This paper proposes a method that predicts the 

pedestrian detectability considering the difference between individual drivers. The proposed method constructs a 

predictor specific to each driver, in order to predict the pedestrian detectability precisely. To obtain the ground 

truth of the pedestrian detectability, we conducted an experiment by human subjects using images from an in-

vehicle camera including pedestrians. From the comparison between the output of the proposed method and the 

actual detectability, we confirmed that the proposed method significantly reduces the prediction error in 

comparison with the existing methods. 
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1 Introduction 

In recent years, advances in pedestrian detection 

technology using in-vehicle cameras and sensors 

have resulted in the development of driving 

assistance systems that notify the drivers of the 

presence of pedestrians. However, warning the 

driver of all visible pedestrians could be confusing 

and is thus prohibitive towards safe and 

comfortable driving. Therefore, it would be useful 

to develop a method to predict the driver’s 

perception performance of pedestrian detectability. 

Figure 1 shows an example of the detectability of 

pedestrians in different conditions. 

Several research groups have proposed methods for 

predicting the pedestrian detectability. Engel et al. 

[1] proposed a method for predicting the pedestrian 

detectability using image features and information 

on the structure of the road. Wakayama et al. [2] 

proposed a method considering Visual Search [3] 

and pedestrian motion. They used a saliency map 

[4] and motion features. The aim of these methods 

is to estimate the average pedestrian detectability 

for all drivers in general. However, in practice, the 

visual performance of individual drivers affects the 

pedestrian detectability. 

In this paper, we focus on the difference of visual 

 
Figure 1. Example of the difference of pedestrian 

detectability. Pedestrian (A) is near the camera, and 

is easier to detect. Pedestrian (B) is far from the 

camera, and is more difficult to detect. 

 

performance between drivers, and propose a 

method for personalized prediction of the 

pedestrian detectability. To achieve this, we 

construct predictors optimized for individual 

drivers and predict the pedestrian detectability 

incorporating these predictors. 

In the following, section 2 describes the details of 

the proposed method. Then, dataset construction by 

human subjects using in-vehicle camera images is 

reported in section 3. Next, evaluation of the 

proposed method is reported in section 4. Finally, 

we conclude this paper in section 5. 
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Figure 2. Process flow of the proposed method. 

 

2 Personalized detectability 

prediction 

Figure 2 shows the process flow of the proposed 

method. The input is an in-vehicle camera image, 

positions of pedestrians and the driver’s eye 

position.  Then, the proposed method calculates 

several types of image features related to the 

pedestrian detectability. Finally, the pedestrian 

detectability is predicted by SVR (Support Vector 

Regression) [5] trained using these features. 

2.1 Features 

The features used in the proposed method are 

categorized into: 

1.   Target pedestrian features 

2.   Contrast features 

3.   Global features 

Table 1 lists the features used for predicting the 

pedestrian detectability. The following sections 

describe the details of these features. 

2.1.1 Target pedestrian features 

The proposed method calculates features on the 

appearance of a target pedestrian. They are 

extracted from within a pedestrian region as shown 

in Figure 3. First, the size of the pedestrian region 

Parea, Pwidth, Pheight are extracted. Next, since the 

luminance of the pedestrian region may also affect 

the detectability, Pμ(lum) and Pσ(lum) are calculated. 

Here, the proposed method assumes that the 

position of the pedestrian is obtained by a 

pedestrian detection method [6]. 

2.1.2    Contrast features 

Contrast features are extracted by calculating the 

contrast between the pedestrian region and its 

surrounding region. As shown in Figure 3, the 

surrounding region is determined in proportion to 

the size of the pedestrian. The proposed method 

calculates several types of contrasts against 

luminance, color, edge, texture, frequency 

characteristics, and color histogram.  

Table 1. List of features used for predicting the 

pedestrian detectability. 

 

 

 
Figure 3. Definition of the surrounding region.  

 

 

 

Category Abbreviation Description 

Target 

pedestrian 

features 

Parea Area, width, and 

height of a 

pedestrian. 

Pwidth 

Pheight 

Pμ(lum) 
Average, and 

standard deviation 

of luminance within 

a pedestrian region. 
Pσ(lum) 

Contrast 

features 

Cμ(lum) 
Difference of 

luminance, color, 

edge, texture and 

frequency, between 

a pedestrian region 

and its surrounding 

region.  

Cσ(lum) 

Cμ(RGB) 

Cμ(Lab) 

CE(gray) 

CE(RGB) 

CTEX 

CFFT 

HR,G,B 
Difference between 

color histograms of 

R,G,B and L,a,b. HL,a,b 

Global 

features 

N 

The number of 

pedestrians in an 

image. 

D(p,c) 
Distance from a 

pedestrian to eye 

position, and the 

nearest pedestrian. 
D(p,p’) 
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Fix eye position Display image (200ms) Display noise (1,000ms) Input response
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Figure 4. Experiment steps. (a) A subject fixes his/her eye direction at the center of the screen. 

(b) An in-vehicle camera image is displayed for 200 msec. (c) A noise image is displayed for 1,000 msec.  

(d) The subject inputs his/her response by selecting rectangles among multiple choices.

The luminance contrast features are calculated as the 

average luminance Cμ(lum) and its standard deviation 

Cσ(lum). Cμ(lum) is calculated as 

(1) 

 

where )lum(P and )lum(S are the average of 

luminance values within the pedestrian region and 

the surrounding region, respectively.  

The color contrast feature is calculated as 

(2) 

 

where 
)color(P


and 

)color(S


 are the average vectors of 

the color value inside the pedestrian region and the 

surrounding region, respectively. Here, RGB and 

L*a*b color space are used. 

The edge contrast feature is extracted by calculating 

the edge strength of the pedestrian region and the 

surrounding region. 

The texture contrast feature is extracted using gray 

level co-occurrence matrix. This feature is calculated 

as 

                                                                                

(3) 

 

where k is the size of the co-occurrence matrices, and 

PM and SM are the co-occurence matrices of the 

pedestrian region and the surrounding region, 

respectively.  

The frequency contrast feature is extracted as the 

difference of the power spectrum strength between 

the pedestrian region and the surrounding region. To 

calculate the spectrum strength, the proposed method 

applies Fourier transform to the input image. This 

feature is calculated as 

 

(4) 

 

where U and V are the size of Fourier transformed 

image ),( vuFP
 and ),( vuFS

 respectively. 

The color histogram contrast is evaluated by 

calculating the distance of color histograms between 

the pedestrian region and the surrounding region. 

Here, the proposed method uses Earth Mover’s 

Distance (EMD). This feature is calculated as 

(5) 

where dEMD represents the Earth Mover’s Distance. 

Hp and Hs are color histograms of the pedestrian 

region and the surrounding region, respectively. 

2.1.3    Global features 

As global features, the proposed method evaluates 

the locations of the target pedestrian and other 

pedestrians. In a driving environment, the more 

number of pedestrians exist on the road, the more 

difficult it is to recognize all of them correctly. 

Therefore, two features are considered: the number 

of pedestrians, and the distance from the target 

pedestrian to his/her closest pedestrian. In addition to 

these features, the distance from the target pedestrian 

to the driver’s eye position (the center of the image) 

is calculated. This feature was selected since human 

vision has a high resolution around the center of the 

field of vision compared to that of its periphery. 

2.2  Prediction of the detectability 

Detectability predictors are constructed by SVR. 

This section introduces an overview of the 

construction phase and the prediction phase. 

2.2.1 Construction phase 

The predictor is trained by using pairs of feature 

values and a ground truth of the pedestrian 

detectability. In addition, the proposed method aims 

to adapt a predictor to individual drivers. To achieve 

this, the proposed method selects effective features 

for each driver and constructs predictors specific to 

the driver. RBF (Radial Basis Function) kernel is 

used in the SVR, and LIBSVM [7] is used for 

training the SVR. 

2.2.2 Prediction phase 

In the prediction phase, features are extracted from 

images captured by an in-vehicle camera. Then 

pedestrian detectability is calculated by using the 

predictor specific for each driver. 

3   Dataset construction by human 

subjects 

To predict the pedestrian detectability, we need its 

actual value. Therefore, we performed an experiment 

to obtain the ground truth of the detectability of 

http://ejje.weblio.jp/content/gray+level+cooccurrence+matrix
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Table 2. Comparison of features effective for individual human subjects. 

The results show that the effective features are different between subjects. 

 

 

 

 

 

 

 

Table 3. The result of the MAE of predicted pedestrian detectability. This table compares the proposed method 

with personal adaptation and the comparative method [1,2] without personal adaptation.

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Comparison of the prediction accuracy by MAE for subject E 

between the proposed method and the comparative method. 

 
pedestrians. Engel et al. [1] and Wakayama et al. [2] 

conducted experiment with several human subjects, 

then decided the ground truth of the pedestrian 

detectability by taking the average of the correct 

answer rate among subjects. However, in the 

proposed method, we need the ground truth for 

individual subjects. Therefore, we extended their 

experimental framework as follows.  

Figure 4 shows the flow of the proposed experimental 

framework. At first, a subject was instructed to fix 

his/her point of view at the center of the screen. Then 

the subject was shown an image captured from an in-

vehicle camera for 200 msec. After that, to reduce 

the influence of    afterimage, the subject was 

shown noise images for 1,000 msec. Finally, the 

subject was asked to respond the locations of 

pedestrians by selecting rectangles containing 

pedestrians in the image. 

We performed this experiment with six male subjects 

in their 20s. Every subject took the experiment for 

four times. Finally, the ground truth of the pedestrian 

detectability was calculated as the ratio of correct 

answers by each subject. In this experiment, we 

prepared 200 images whose sizes were 1,280 × 720 

pixels. The number of pedestrians in each image was 

between 0 and 4, and 271 pedestrians in total were 

observed in the images without occlusions. 

4   Experiments and Discussion 

To evaluate the proposed method, we compared 

between the output of the proposed method and the 

actual detectability. We constructed predictors for 

individual subjects by their own pedestrian 

detectability and effective features selected for them 

from 18 features shown in Table 1. Using a 

personalized predictor, we evaluated the performance 

of the proposed method by 10-fold cross validation. 

To evaluate the effectiveness of personalization, we 

compared the prediction accuracy between the 

proposed method and a comparative method that uses 

a non-personalized predictor trained by the average 

of all subjects’ results [1,2]. 

Table 2 shows the comparison of effective features 

for each subject. From this result, we confirmed that 

effective features were different between drivers; 

While some features (e.g. Pwidth) were effective for 

overall performance, some others were effective to 

evaluate the difference between drivers’ visual 

performance. 

Table 3 shows the accuracies of the predicted 

pedestrian detectability between the proposed 

method and the comparative methods. As can be 

seen in the table, the effectiveness of personalization 

was different between individual subjects. 

Meanwhile, Figure 5 shows a comparison of 

prediction accuracies between the proposed and the 

 

Feature 

Subject 

A B C D E F 

Pwidth   －    

Cμ(lum)  －  － － － 

N － －    － 

Method 
Subject 

A B C D E F 

Comparative 0.190 0.194 0.203 0.185 0.222 0.206 

Proposed 0.172 0.184 0.196 0.175 0.204 0.195 
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comparative method. This graph shows the Mean 

Absolute Error (MAE) between the ground truth of 

the pedestrian detectability and the predicted value 

for subject E. As can be seen in the graph, the 

proposed method showed more effect for low 

detectability pedestrians.  

From these results, we confirmed that the proposed 

personalization for individual drivers significantly 

contributed to improve the prediction accuracy. 

However, the accuracy of the proposed method 

might be able to be improved by considering other 

human visual property. 

5 Conclusion  

This paper proposed a method for personalized 

pedestrian detectability prediction from in-vehicle 

camera image. To improve the accuracy, the 

proposed method considered differences between 

individual drivers. Evaluation results showed that the 

adaptation for a driver is effective for the prediction 

of the pedestrian detectability. Future works include: 

(1) investigation of features that can represent the 

difference of drivers, and (2) evaluation of the 

proposed method through larger experiment with 

many subjects. 
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