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Abstract. Accurate vehicle positioning is important not only for in-car
navigation systems but is also a requirement for emerging autonomous
driving methods. Consumer level GPS are inaccurate in a number of
driving environments such as in tunnels or areas where tall buildings
cause satellite shadowing. Current vision-based methods typically rely
on the integration of multiple sensors or fundamental matrix calculation
which can be unstable when the baseline is small.
In this paper we present a novel visual localization method which uses
a visual street map and extracted SURF image features. By monitoring
the difference in scale of features matched between input images and the
visual street map within a Dynamic Time Warping framework, stable
localization in the direction of motion is achieved without calculation of
the fundamental or essential matrices.
We present the system performance in real traffic environments. By com-
paring localization results with a high accuracy GPS ground truth, we
demonstrate that accurate vehicle positioning is achieved.

Keywords: Ego-localization, Monocular Vision, Dynamic Time Warp-
ing, SURF, Vehicle Navigation

1 Introduction

Vehicle ego-localization is an essential component of in-car navigation systems
and a necessary step for many of the emerging driver assistance and obstacle
avoidance methods. Standard GPS systems can be sensitive to the occlusions
common in city driving situations, and rarely manage 5 m accuracy even in ideal
environments. For tasks such as lane recognition and obstacle avoidance, higher
precision in all environments is required.

For unrestrained motion in unfamiliar environments, Simultaneous Local-
ization and Mapping (SLAM) [1] is an active area of research. Camera-based
methods are popular [2], [3], [4]. For automotive navigation, the availability of
a-priori information and the applicability of known constraints, such as a fixed
ground plane, allow for simpler localization without the need for simultaneous
map construction and loop closure detection. Therefore there are an increasing
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number of methods that propose the use of cameras with a pre-constructed im-
age database for vehicle positioning [5], [6], [7], [8], [9]. This configuration still
has many challenges, including robust localization when lateral translation oc-
curs (for example when a lane change takes place) and computational issues with
the calculation of geometry such as the fundamental matrix between views.

In this paper we propose a method for ego-localization that makes use of the
scale of Speeded Up Robust Features (SURF) [10] to match images, and show
how the use of feature scale improves image match accuracy. A query image is
localized by using the known position information of the closest match within
a database, or image street map. Unlike other image feature-based localization
techniques, no essential or fundamental matrix calculation is required, yet the
advantages of feature-based methods including robustness to occlusions and lat-
eral motion are retained. Our method consists of three main components:

1. A visual street map with embedded SURF and accurate position information
for every image, constructed from high accuracy sensors including GPS, IMU
and odometry

2. A weighted feature matching method which applies the constraints of typical
road scenes to the matching of SURF points

3. A localization algorithm that monitors the scale difference between SURF
features in the query and street map images within a Dynamic Time Warping
(DTW) [11] algorithm to achieve stable localization

We demonstrate the performance of our system in a typical urban traffic envi-
ronment, and show that using feature scale changes is a simple yet robust way
to find the closest street map image and therefore localize the current image. We
show how our method is capable of localization even when the traversed lane is
different from the lane used for image street map construction.

This paper is organized as follows: In Sect. 2 we give a brief overview of
related research. We describe the proposed method in more detail in Sect. 3 and
experimental results are presented in Sect. 4. We discuss the results in Sect. 5
before concluding in Sect. 6.

2 Related Work

For automotive ego-localization, there are many visual methods which per-
form vehicle positioning by using a pre-constructed database [5], [8] or image
databases such as Google Street View [9]. These systems perform complete lo-
calization relative to database images using structure from motion techniques.
Such methods allow high accuracy, for example, up to 10 cm precision when
combined with an IMU [5], but are also computationally intensive and therefore
may barely run in real-time (Lategahn et al. [5] quote 3–10 Hz for their vision
+ IMU method). They also usually employ supporting sensors in the localiza-
tion stage—either an IMU [5], or odometry information [9]. A simpler approach
is to localize against the closest database image, of which location is known,
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using DTW [11] (or Dynamic Programming [12]) to remove temporal differ-
ences between query and database image streams [6], [13], or by using a low
bit-rate image sequence instead of single images [14], which improves stability
in varying lighting and weather conditions. The image similarity measure used
for matching between sample images and those in the database can be based
on average image intensity difference [14], or a kind of template matching [6],
[13]. Lane changes and occlusions are not well handled by such methods because
they cause a sustained difference in appearance of an appreciable portion of the
image. Feature point-based methods are more robust to such changes. Kyutoku
et al. [7] matched SIFT [15] features between images to calculate the position
of the epipole as a DTW cost measure for comparing image capture positions.
The epipole moves away from the vanishing point as the image capture posi-
tions become similar. While effective, this technique requires the calculation of
the fundamental matrix so can be unstable when the baseline between the query
and database images is small.

Vehicle ego-localization is similar to the localization component of the SLAM
problem for robotic navigation [1]. There are a number of successful SLAM im-
plementations using a single camera which typically employ structure from mo-
tion techniques to determine camera pose [2], [3], [4], [16]. SLAM methods do
not easily scale to the large environments found in automotive environments;
however the SLAM loop closure problem, where a robot must recognize when
it has entered a previously mapped area, is similar to the map relative local-
ization step of automotive ego-localization. State-of-the-art SLAM loop closure
methods often use Bag of Features [4], [17], which are excellent at recognizing
visually similar areas for loop closure but do not provide a solution for exact
localization. They also require the construction of feature vocabularies, which
can make scaling to very large environments challenging.

None of the methods mentioned above make use of the scale property of image
features to determine image similarity. We show that by using scale differences
between matched features as a cost measure for DTW, we can accurately match
query images to an image map in an automotive setting. Our method does
not require the calculation of feature vocabularies or reconstruction of scene
geometry, and since it is feature-based, it continues to work well when partial
occlusion or lane changes occur.

3 Proposed Ego-localization Method

This section describes a method of ego-localization by comparing images cap-
tured from a vehicle-mounted camera and a pre-constructed visual street map.
The street map is constructed using data captured from a vehicle equipped with
cameras and accurate positioning hardware. Images captured in the localization
step are compared to the street map images using DTW to compensate for speed
differences in the two image streams. The process is described in more detail be-
low. Sect. 3.1 describes the concept behind SURF scale matching, and Sect. 3.2
details the visual street map construction step. Sect. 3.3 describes the localiza-
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Fig. 1. A flow chart outlining the proposed method. The two main stages are the visual
street map construction, and ego-localization by DTW matching the query images from
the vehicle to be localized to the street map.

tion of an input query image. An overview of the proposed system is presented
in Fig. 1.

3.1 Concept: image matching using SURF scale

Scale invariant features such as SURF are commonly used for their robustness
to changes in lighting and view orientation. One of the properties of SURF
keypoints is their size, or scale. The method proposed in this paper is based
around the use of the scale of these features for image matching and therefore
localization. If two images have the same viewing direction, their corresponding
SURF feature points will have a similar scale when the capture positions were
spatially close. As the distance between the images increases, the difference in
corresponding feature scales also increase. The proposed method makes use of
this change to match images between the query image and the street map by
averaging the scale change of the matched features. The street map image with
the smallest average scale change from the query is selected as a match, therefore
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Fig. 2. A demonstration of scale change for image matching. The street map images
are in the top row and the query image below. A sample feature matched across all
views shows how the scale change is used to find the closest match.

localizing the query image in the direction of motion. In the context of DTW,
features extracted from street map images behind the query image’s location
will have a smaller scale than the corresponding features of the query image;
conversely, corresponding features from street map images from in front of the
query image will have larger scale. Sequentially running through the street map
images and finding where the feature scale changes are minimized leads to the
spatially closest street map image for each query image, and because we know
the location of each street map image in world co-ordinates, we can assign this
position to the query image for localization. Only the scale change between the
matched features is used, so there is no need to calculate fundamental matrices.
This allows matching even when the baseline between query and street map
images is small. When lateral motion occurs, the average scale change remains
constant so the method is also robust to changes in lane and road position when
localizing in the direction of motion. Fig. 2 shows the concept of using feature
scale change for image matching.
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3.2 Visual street map construction

The visual street map used by this method consists of a series of images with
corresponding world locations and SURF feature points. The street map con-
struction step is performed only once. In addition to one (or more) cameras for
image capture, precise localization sensor hardware is required. For the results
presented in this paper, the equipment used to construct the street map included
several vehicle mounted cameras, a high accuracy GPS, and hub mounted odom-
etry recording hardware. This hardware configuration allowed high accuracy po-
sitioning of each image frame in the visual street map. More information on the
experimental setup is provided in Sect. 4. SURF features are extracted from each
image in the visual street map, resulting in a series of images with corresponding
camera positions and SURF keypoints with descriptors.

3.3 Localization

The localization step only requires the pre-constructed visual street map and
query images from a vehicle-mounted camera. The process can be broken into
two main steps:

1. SURF feature extraction and matching
2. Sequential image matching to the database images using average scale change

of SURF points and DTW matching

The result is a position in world co-ordinates for the vehicle at the current image,
corresponding to the closest street map image location.

SURF feature extraction and matching. Extracted SURF features are
matched to features from the series of the street map images, starting from the
last matched image in the sequence. The proposed method relies quite heavily
on a reasonable number of correct matches. To keep the localization step simple
and efficient, RANSAC pruning of outlier feature matching is avoided. Instead,
we propose a simple weighted matching cost which matches features based on
known constraints. The views in both streams are forward looking and the cam-
era heights are constant, so good image match candidates will have similar y
pixel coordinates and a limited change in scale and feature response. Based on
these properties, a weighted criteria is used for determining likely inlier matches.
A spatial constraint is applied so that each potential match candidate is only
searched for in a region with pixel values close to where the feature was located
in the query image, particularly in the y direction of the image plane. The can-
didate features must also be from the same octave. Then the best match for
the query image feature fτ is calculated by finding the database image feature
fi within the set of N features i = 1, 2, ..., N which minimizes the following
equation:

m(i) = ws|s(fτ )− s(fi)|+ wr|r(fτ )− r(fi)|
+wd(SSD(fτ , fi)),

(1)
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where s(f) is the feature scale, r(f) is the feature response, and SSD(f1, f2) is
the standard sum of squared differences of the feature descriptors. The weights
ws, wd, wr should be adjusted to give a strong inlier set while maintaining a high
number of matched features.

DTW matching. DTW is a popular for method for optimally aligning time-
dependent sequences by using a local cost measure to compare sequence features
[11]. In the proposed localization method, DTW computes the cost between the
current query image and a sequence of street map images, and selects the mini-
mum cost as an image match. The aim of the process is to find the most similar
street map image for each query image, therefore removing temporal differences
in the two image streams and allowing the query images to be localized rela-
tive to the image street map, as illustrated in the system overview in Fig. 1.
We propose a cost measure based on the average scale change of matched SURF
features. Matched SURF features that are extracted at the same octave [10] may
vary in scale if there is a translation between the two cameras; we make use of
the scale differences to match images which are closest to each other. For a set of
street map images I1 = {t | 0 ≤ t ≤ T1} and query images I2 = {τ | 0 ≤ τ ≤ T2}
we take the latest query image I2(τ) for localization. A subset of the street map
images, Ĩ ⊂ I1 → t̃ ∈ Ĩ is selected for cost minimization. This is done by cal-
culating the query image feature matches with sequential street map images,
starting with the previously matched street map image and continuing until the
number of matched features falls below a threshold. Within the resulting subset
of street map images, only the individual feature matches that are consistent
throughout the whole subset are used. This results in a set of Nt̃,τ matched

features f in each subset street map image Ĩ(t̃) and the query image I2(τ). This
step is important, because some street map images will have many more feature
matches than others, and scale changes vary depending on overall feature size.
By only considering features shared throughout the subset Ĩ, a fair comparison
in relative scale change can be made. The number of features used is the same
for each candidate feature street map match (Nt̃,τ is the same for all Ĩ(t̃)), so
as a cost measure for DTW the absolute summed scale change is equivalent to
the average scale difference. The cost of each image match g(t̃, τ) is therefore
calculated by summing the absolute feature scale differences as follows:

g(t̃, τ) =

Nt̃,τ∑
i=0

|s(ft̃,i)− s(fτ,i)|, (2)

where s(f) is the scale parameter extracted from the relevant SURF feature. The
street map image which minimizes g(t̃, τ) is deemed to be the closest location to
the query image, providing localization in the direction of motion.

4 Experiments

Testing of the proposed method was carried out in an urban environment which
included a variety of buildings, traffic, lighting variations and lane changes.
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Fig. 3. Frame matching accuracy of the proposed method using one camera, two cam-
eras, and the comparative method using number of matched features.

4.1 Vehicle configuration

The visual street map and query image streams were captured using a Mitsubishi
Electric MMS-X320R Mobile Mapping System (MMS). This system incorpo-
rates three 5 megapixel cameras, three LASER scanners, GPS, and odometry
hardware. The localization system of the MMS was used both for street map
construction and also to supply a ground truth for the query image set for eval-
uation. Images from two forward facing cameras were used in both street map
construction and localization performance testing. The MMS provides a claimed
localization precision of greater than 6 cm (RMS), and the system provided an
estimated average error of below 1 cm in the experiments we conducted.

For the purposes of evaluating the performance of the proposed method, two
passes of the same road were made over a stretch of about 2 km. The two cameras
captured frames at intervals of approximately 2 meters, at vehicle speeds varying
between 20 km/h and 50 km/h. The database pass was made in the left hand
lane where the localization pass was made in the right hand lane.

4.2 Localization performance

For feature matching, the weights ws, wd, wr from (1) were selected by observing
incorrect matches and modifying accordingly. The scale difference of correct
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Table 1. Localization Results

Method
Avg.

error (m)
Max.

error (m)

Proposed method (with SURF
scale, one camera)

1.96 8.10

Proposed method (with SURF
scale, two cameras)

1.56 6.00

Comparative method (without
SURF scale, one camera)

8.45 16.12

matches was typically relatively small so a ws value of approximately ten times
wd and wr (which were approximately equal) was found to be effective. This
configuration still prioritized the SSD of feature descriptors for determining the
best feature match.

Localization relative to the street map was performed using one camera and
repeated with two cameras. For a comparative method that does not make use
of feature scales, the inverse of the number of matched features was used for the
DTW matching cost [18]. In the comparative method, the cost measure in (2)
was replaced with the following:

g(t̃, τ) = 1/Nt̃,τ . (3)

If enough features are extracted and the same feature match filtering de-
scribed by (1) is employed, the comparative method offers a reasonably effective
way of identifying the general street map area of the current query image. How-
ever, the results we present below show how additionally monitoring the scale of
the matched features allows a much more refined comparison of the input and
street map images.

The localization accuracy for each method was evaluated by using the MMS
localization data. The ground truth localization information associated with the
query images was used to calculate the actual closest visual street map image,
creating an image match ground truth. The match result of the query image
relative to the street map was compared to the image match ground truth. The
image matching results of the three methods are presented in Fig. 3.

The results show that the use of the scale of matched features gives a more
robust distance measure between the query and street map images, even when
the query images are captured in a different lane from the street map images.
Comparison of the one and two camera results shows that wider field of view pro-
vided by two cameras increases the image matching performance of the method
considerably. Fig. 4 shows a comparison of the street map images selected as
matches and sample query images, for both the proposed method and com-
parison method. The image matching performance of the proposed method is
consistently good, with the GPS ground truth showing that the system finds the
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correct closest street map image for 70 % of the time, and is always within 3
frames of the correct match (when both cameras are used).

The cameras capture images at distance rather than time intervals, so there is
a high accuracy penalty for each incorrectly matched image frame. An incorrect
match results in a localization error of approximately 2 m or a multiple of 2 m
because of the fixed frame capture separation of the MMS system. Despite of
this, the average localization error of our system was less than 2 m, which is
within one street map image interval, even when a single camera was used. The
average localization accuracy results are presented in Table 1.

5 Discussion

Even though the street view map was constructed using a different lane from the
query image views, successful localization was performed, illustrating the robust-
ness of using feature scale for image matching when lateral change in viewpoint
occurs. Because it is a feature-based localization method, it also demonstrated
robust matching in the presence of occlusion. An example of successful matching
in an occluded scene is shown in Fig. 5. Unlike most feature-based localization
methods, no calculation of image geometry is required, so the method is simple.
It also demonstrated good recovery from incorrect matches. In the dataset used
for the experiments, the vehicle never came into a situation where localization
was not possible within the spatial constraints applied by the DTW method. In
the case where this could happen though, if the vehicle became lost a regressive
image matching method from a wider selection of the street map images may
need to be performed.

There were a number of issues specific to the image capture method which
limited the accuracy of the proposed method in our experiments. The 2 m capture
interval of the camera meant that the metric localization error of individual
image matches could only be evaluated in multiples of approximately two meters.
The accuracy of the system is highly dependent on the frame rate of capture
and also visual street map image interval, so a higher frame rate would provide
far superior results and more effective analysis of accuracy. The localization
accuracy could also be potentially improved by applying a motion model and
interpolating the query image position between the two closest matched street
map images.

The use of both forward facing cameras improved the results, because of the
wider field of view they enabled. The two cameras were not used as a stereo
pair so a similar result could be achieved using a monocular camera and a lens
providing a wide field of view.

The experiments in this method used the same vehicle and cameras for the
street map construction and localization stages. This is quite a favorable config-
uration, so future work will include testing with images from a range of cameras
and lens types as well as determining how differing camera heights and environ-
mental conditions affect the stability of the system.
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Fig. 4. Sample images showing DTW matching results. The central column is the
query image, and the one on left the corresponding matched street map image using
the proposed method. The column on the right shows the matched street map images
using the comparative method. The numbers in the top right of the images are the
sequence frame numbers, showing how DTW matching absorbs differences in vehicle
speeds between the visual street map and query image sequences. Note that although
results from using both cameras are displayed, only the left-hand camera image is
shown for clarity.
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Fig. 5. Example of successful image matching when occlusions occur in either the query
image or street map image.

6 Conclusion

We proposed a method for ego-localization using the average SURF scale change
across matched features as a cost measure for sequential image matching against
a pre-constructed visual street map. The experimental results show that effective
street map image matching can be achieved with an average error of 1.56 m using
two cameras. The system performs well even when the query images are captured
in a different lane from the street map images, and is robust to occlusions in
either image streams. There are potential improvements in localization accuracy
to be made by using a higher frame rate image capture for the visual street map
and localization stages. Interpolating the vehicle position between several of the
closest matched street map images rather than taking the position of the single
closest matched street map image is another potential extension to the method.

Future work will include the construction of a street map with a higher cam-
era frame rate for greater localization accuracy, and testing in a larger variety of
environmental conditions. We also plan to test the method with different cam-
eras and lenses, for example a single camera with a wide angle lens configuration
for a wide field of view to replace the two camera experimental setup presented
in this paper.
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