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Abstract Cross-modal recipe retrieval has become a popular task in multimedia research due to the importance

of food in daily lives. With the development of neural networks, the limit for this task is no longer in the encoders of

image or text but to learn a better embedding space across image-text modalities. In this presentation, we propose

the usage of an Intra-Modal Constraint (IMC) loss function for learning the joint embedding of image and text.

The IMC loss penalizes when negative pairs from the same homogeneous modality when they are close in the joint

space. We investigated the effectiveness of the proposed method through experiments on a cooking recipe dataset

Recipe1M.
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1. Introduction

Meal is one of the most essential symbol for human civi-

lization. It has become a crucial element for healthy lives,

sharing cultural differences, and sense of community. More-

over, recipes has become a popular means of sharing meals,

and many people follow such recipes to reproduce the meals.

We usually have experiences in daily life about seeing some

delicious-looking meal images and attempting to try to cook

them but fail to find detailed recipes explaining how to repro-

duce them. On the other hand, when we find an interesting

recipe but hesitate if we should try cooking it, its image will

help us make the decision. To deal with these problems, the

recipe retrieval task has gathered much attentions [1]. The

goal of recipe retrieval is finding a relevant recipe from an in-

put meal image by retrieving the right image accompanying

a recipe. Retrieving a relevant image from an input recipe is

also available by the same system. Since some recipes have

similar titles and more text could offer more information for

the system, using the full recipe instead of only the title could

enhance the performance of the recipe retrieval system.

Emerging numbers of recipe-based social media platforms

(a) Image-to-Recipe retrieval

(b) Recipe-to-Image retrieval

Fig. 1 Cross-modal retrieval examples. Query and top-3 retrieval

results from left to right.

such as Allrecipes1 and Food Network2, and recipe datasets

1: https://www.allrecipes.com/

2: https://www.foodnetwork.com/
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[1, 2] have provided an opportunity to accelerate system de-

velopments of this task. These massively labeled datasets

could help us achieve the goal of learning representations

from various samples.

Recent efforts addressing the problem of extracting text

features by Recurrent Neural Network (RNN) architectures,

such as the Long Short-Term Memory (LSTM) [3] units and

Gated Recurrent Units (GRU) [4] have emerged as effective

models to capture long-term dependencies in sequential data.

At the same time, with the development of computer vision,

widely pre-trained models can be used for extracting image

features effectively such as ResNet-50 [5]. In addition, some

previous studies aim to learn joint representations for tex-

tual and visual modalities in the context of food images and

cooking recipes [1, 6–10]. To learn an appropriate joint em-

bedding space, loss function is a key.

In this work, for dealing with the problem of heterogeneous

modality restriction, we use Intra-Modal Constraint (IMC)

loss [11] for reducing the violation between negative pairs

within the same modality. The violation means some rep-

resentations from the same modality might be similar and

mislead the model to retrieve the right one from numerous

alternatives. To be specific, the IMC loss levers the Intra-

Modal Constraint item which can measure the distances be-

tween homogeneous modalities. In the process of calculation,

the loss will increase with another penalty term in the case

of negative pairs in the same modality. In other words, this

process could increase the intra-modal non-pair distance, the

distance corresponding to the similarity of two representa-

tions and the higher distance means the lower similarity.

We also performed experiments using different similarity

functions, such as the L1 normalization and L2 normaliza-

tion which can effectively obtain the distance between two

features.

In the following, we introduce related work in Section 2,

proposed method in Section 3, experiment in Section 4, and

conclusion in Section 5.

2. Related Work

2. 1 Cross-Modal Recipe Retrieval

This research explores cross-modal recipe retrieval, which

has attracted attentions from many researchers. They try

to construct a system to retrieve relevant information from

a query in different modalities as shown in Fig. 1. These

models are usually trained via direct correspondence between

pairs of instances in different modalities. To be specific, the

recipe retrieval task uses food images and corresponding text

descriptions. The text description is composed of a title,

ingredients, and instructions. One of the challenges is the

media gap [12], which indicates the features from different

modalities are inconsistent, so it can be difficult to calculate

their similarity accurately.

A system for this task is usually composed of an image en-

coder and a text encoder which uses pre-trained image recog-

nition models and natural language understanding models.

They are followed by projection onto a joint embedding space

calculated by a loss function. Most studies aim to train a

better space via diverse strategies.

Compared to some other tasks which involve the descrip-

tions of an image such as the image captioning task, the

text description part in cross-modal recipe retrieval is longer

and more complex. This characteristics also leads to the

difficulty of encoding. For dealing with the structured na-

ture of the recipe text, some previous methods extract fea-

tures from these components independently and concatenate

them in a late-fusion layer. In this way, the problem of the

structured nature of recipe text is solved and these compo-

nents could be merged as a fixed-length recipe embedding.

For learning appropriate embeddings in text, word2vec [13]

and GloVe [14] are popular strategies and the representations

from these strategies can be used as the input.

Some researches focus on training a better joint embedding

space via different strategies. Chen et al. [7] proposed a deep

hierarchical attention network of words and sentences. The

method projects them onto a common embedding space. In

this way, the model can understand the instructions better

and predict the consequences from the visual representations

precisely. Cao et al. [15] presented a retrieval framework

based on co-attention network. This network can learn the

representations of texts and images. The co-attention net-

work computes the attention weights of cooking procedures

and retrieve appropriate components from them.

2. 2 Image-Recipe Representation Computation

and Understanding

For this research, as the base of retrieving the correspond-

ing representation from another modality, understanding the

representation in both directions is important. Food under-

standing has become a popular topic, because it involves

many tasks related to food. With the infiltration of social

media into our daily lives, people tend to share food images

online. It offers us a rich data source to analyze foods and

related information.

Many studies pay attention on food image classification

[16–18], some interesting ones aim to predict the calories [19]

or estimate the ingredients from a dish [20]. These tech-

niques offer assistance to researches such as that by Salvador

et al. [1] which learn the representation from the informa-

tion of food categories and propose the Recipe1M dataset.

This dataset also provides the nutrition information for many

foods.



2. 3 Loss Function Learning in Cross-Modal Re-

trieval

An important part of this research is constructing a bet-

ter joint-embedding space by loss function. For learning a

better common space between two different modalities, a va-

riety of loss functions are proposed to fill the gap. One of

the popular methods is called Sum of Hinges (SH) loss [21],

which can reduce the retrieval distance in both directions

(between text and image). Faghri et al. [21] also proposed

the Max of Hinges (MH) loss based on the SH loss. The

MH loss pays more attention on hard negatives for train-

ing, and achieves better performances than the SH loss. The

above two loss functions pay more attention on heteroge-

neous modality pair, but the effect of homogeneous modality

pairs is neglected.

3. Proposed Method

In this section, we propose a cross-modal recipe retrieval

model based on the Intra-Modal Constraint (IMC) loss. As

illustrated in Fig. 2, this model is composed of an image en-

coder, a text encoder, and a joint embedding space. The fea-

tures extracted from these two encoders are projected onto

the joint embedding space. In this work, we take a food im-

age or a cooking recipe as an input, and then give a retrieval

result of the opposite modality as an output.

3. 1 Food Image Encoder

The purpose of the image encoder is to learn an appro-

priate function to project the input image onto the joint

image-text embedding space. In our work, the pre-trained

ResNet-152 [5] was used as the image encoder. It is followed

by a Fully Connected (FC) layer to extract the image feature

vector eni (dimension Dimg = 1, 024).

3. 2 Recipe Text Encoder

The recipe encoder aims to learn an appropriate function

to project the input text onto the joint image-text embed-

ding space. The word representation is obtained from the

pre-trained GloVe [14] and we employ the Bi-direction Long

Short-Term Memory (Bi-LSTM) [3] which considers both

forward and backward orderings to obtain the text feature

vector. In addition, due to the structured nature of a recipe,

we use three separate encoders to process sentences from the

title, ingredients, and instructions. They are followed by a

FC layer to extract the recipe feature vector ent (dimension

Dtxt = 1, 024).

3. 3 Intra-Modal Constraint Loss

The image feature eni and text feature ent from the n-th

image and its corresponding text are extracted from two sep-

arate networks. They are projected onto a common embed-

ding space called Intra-Modal Constraint Loss Joint Embed-

ding Space. The non-pair features are represented as eni and
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Fig. 2 Overview of the Intra-Modal Constraint (IMC) model. Im-

age feature (eni ) and text feature (ent ) are the inputs of

the Intra-Modal Constraint Loss Joint Embedding Space.

Distance of inter-modal paired feature representations (eni

and ent ) is reduced and that of intra-modal non-pair fea-

ture representations (eni and emi ) is increased.

emi which indicates the negative pair from the n-th image

and the m-th image, respectively.

In this work, we use the IMC loss [11] to train the common

joint space and the encoders. The IMC loss is inspired by

MH loss [21], unlike the MH loss, it focuses not only on het-

erogeneous modality pairs but also on the non-pair features

from homogeneous modality. IMC loss is composed by MH

loss and two Intra-Modal Constraint terms as:

 LIMC(m,n) = max
m,n∈N

[α + θ(eni + emt ) − θ(eni + ent )]

+ max
m,n∈N

[α + θ(ent + emi ) − θ(eni + ent )]

+IMC(eni , e
m
i ) + IMC(ent , e

m
t )

(1)

The first item is utilized for dealing with all negative texts

and queried image and the second item is utilized for dealing

with negative images and queried text. Each term is pro-

portional to the expected loss over sets of negative samples.

In this function, the winner takes all the gradients, so. In

this way, the effectiveness of optimization can be enhanced

and also benefit to constructing a better joint embedding

space. The coefficient α serves as a margin parameter and

the function θ(x, y) is a similarity function.

The IMC items can constrain the features from a homoge-

neous modality which is defined as follows:

IMC(en, em) = τ
∑

n,m∈N


0, β(en, em) < µdown

β(en, em), µdown <= β(en, em) <= µup

0, µup < β(en, em)

(2)

The coefficient τ is a weight parameter for balancing the

loss and we defined it as 1.0 here. The function β(x, y) is a

similarity function. The constants µup and µdown are bound-

ary thresholds.



In this way, we can consider both paired/non-paired fea-

tures in the heterogeneous/homogeneous modalities. There

is a variety of normalization functions that is effective as a

similarity function.

In contrast to some previous work that only considers the

relation among the heterogeneous modalities, we also pay

attention to the relation of a homogeneous modality. To be

specific, the process of this part is to reduce the distance from

the paired data and increase the distance from the non-paired

data. In this way, the model can distinguish the correspond-

ing result from an input. The first two items in the loss

function also inherit this principle.

However, some representations from a homogeneous

modality tend to be similar and mislead the model. The

latter two items in the loss function will increase with an-

other penalty term within the boundaries in the situation

of negative pairs. In this way, the distance of similar rep-

resentations from the same homogeneous modality will be

increased and the model can distinguish them well.

4. Experiment

In this section, we report the results of an evaluation ex-

periment for validating the effectiveness of the proposed ap-

proach.

4. 1 Dataset

As same as some previous studies, for training the joint

embedding model and capturing the joint cross-modal in-

formation, experiments were conducted using Recipe1M [1],

which contains one million structured cooking recipes and

corresponding images.

In the task of recipe retrieval, each image should be asso-

ciated to corresponding texts composed of title, ingredients,

and instructions. This dataset also consists of the above

essential information which is extracted from cooking Web

sites.

Due to the structure of the available recipes on the Web,

Recipe1M largely consists of text-only samples and multiple

recipes corresponding to one image. This actually influences

the performance of this model. Additionally, 25 percents of

images are associated with 1 percent of recipes while half of

all images belong to 10 percents of recipes.

4. 2 Experimental Conditions

Following some previous studies, the retrieval performance

of the experimental results was evaluated with the R@K (re-

fer to as R@1, R@5, R@10), medR, and meanR. R@K indi-

cates Recall at K, the proportion of correct matches in the

top K = {1, 5, 10} retrieved results. These metrics are used

to quantify the performance of the model. There are also

some options for similarity functions applied in IMC items.

We also performed an experiment based on these normaliza-

Table 1 Comparison of the results of Image-to-Recipe retrieval

sub-task. Similarity distances of the proposed method

is measured in Manhattan distance (L1) and Euclidean

distance (L2).

R1↑ R5↑ R10↑ medR↓ meanR↓
Salvador et al. [1] 24.0 51.0 65.0 5.2 —

Chen et al. [7] 25.6 53.7 66.9 4.6 —

Proposed (βL1 ) 17.2 62.9 88.4 4.0 5.6

Proposed (βL2
) 18.1 62.8 89.4 4.0 5.5

Table 2 Comparison of the results of Recipe-to-Image retrieval

sub-task. Similarity distances of the proposed method

is measured in Manhattan distance (L1) and Euclidean

distance (L2).

R1↑ R5↑ R10↑ medR↓ meanR↓
Salvador et al. [1] 25.0 52.0 65.0 5.1 —

Chen et al. [7] 25.7 53.9 67.1 4.6 —

Proposed (βL1) 7.5 37.5 74.8 7.0 7.0

Proposed (βL2) 7.4 37.3 74.5 7.0 7.0

tion functions, including the L1 and L2 distance:

Manhattan distance (L1):

L1(en, em) =
∑

n,m∈N

|en − em| (3)

Euclidean distance (L2):

L2(en, em) =

√ ∑
n,m∈N

(en − em)2 (4)

where (en, em) are negative pairs in the same modality.

4. 3 Training Details

The model is implemented in PyTorch running on an

NVIDIA GeForce RTX 3090 GPU. We trained models with

a batch size of 128 with a base learning rate of 2 × 10−4 and

updated every 8 epochs. The Bi-LSTM is initialized with

Xavier init [22] and applies dropout with a probability of 0.5

to avoid over-fitting. The model was trained for 20 epochs

with the Adam [23] optimizer. The thresholds µdown and µup

were empirically set to 0.05 and 0.5, respectively. Different

distance functions were used in the experiment, which will

be explained in the next section.

4. 4 Experimental Results

Tables 1 and 2 show the results of the proposed method

on the Recipe1M [1] dataset.

The used similarity functions here were the L1 distance

and L2 distance as defined in Eqs. (3) and (4). We found

that the Euclidean distance (L2) had better accuracy com-

pared with the Manhattan distance (L1) in general. Un-

like some previous methods, such as those proposed by Chen

et al. [7] and Salvador et al. [1], only project the hetero-

geneous modality representations onto the joint embedding



space, our method takes homogeneous modality represen-

tations into account.The result also shows the effectiveness

of the intra-modal constraint loss, notably in the metric of

R@10. The precision of Image-to-Recipe sub-task was also

higher than the Recipe-to-Image sub-task. This might be be-

cause of the complexity of the text. Especially, concatenating

three components by a linear layer might have influenced the

performance of the model.

5. Conclusion

In this presentation, we studied the cross-modal retrieval

task in the food domain by the IMC loss. We tried to ad-

dress the problem of traditional methods that only focus on

the heterogeneous modality but ignore the features in the

homogeneous modality. This loss allows us to train using

both paired and unpaired recipe data. The result shows this

method could achieve good results in R@10, especially in the

sub-task of Image-to-Recipe. In the future, we will try to

enhance the performance of this model, especially for R@1,

medR, and meanR.
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